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1 Introduction
Bob and Alice each have a secret, SB and SA, respectively, which they wish to exchange. For
example, SB may be the password to a file that Alice wants to access (we shall refer to this file as
Alice’s file), and SA the password to Bob’s file. Can they set up a protocol to exchange the secrets
without using a trusted third party and without a safe mechanism for the simultaneous exchange of
messages?

To exclude the possibility of randomizing on the possible digits of the password, we assume
that if an incorrect password is used then the file is erased, and that Bob and Alice want to guarantee
that this will not happen to their respective files. Because of this assumption, we can take, without
loss of generality, SA and SB to be single bits.

As stated, there is nothing to prevent Bob from giving Alice a wrong password S, possibly even
in exchange for the correct secret SA. Now Bob will read his file, while Alice, using S 6= SB,
will destroy her file.

We assume that the correct passwords SB and SA are indelibly transcribed as prefixes to
Alice’s and Bob’s files. Furthermore, Alice and Bob have a procedure to give each other signed
messages (contracts), and can resort to subsequent adjudication to prove fraud.

Under these conditions, Bob can, for example, give Alice a message “My secret is S, signed
Bob”. If Alice now uses the password S and S 6= SB, then her file, with the exception of the prefix
containing SB, is destroyed and Alice can resort to adjudication with a provable case against Bob.

The above mentioned message, however, does not provide a solution to the EOS1 problem.
Alice can receive the signed message, and read her file without giving SA to Bob. When Bob
goes to court, Alice can say: “I gave Bob the password SA and he has not used it; I am willing to
reveal it again right now.” Even if Bob obtains SA at the time of adjudication, Alice has gained an
advantage by having read the file well ahead of him.

With all the above assumptions the problem still seems to be unsolvable. Any EOS protocol
must have the form: Alice gives to Bob some information I1, Bob gives to Alice J1, Alice gives to
Bob I2, etc. There must exist a first k such that, say, Bob can determine SA from I1, . . . , Ik, while
Alice cannot determine SB from J1, . . . , Jk−1. Bob can withhold Jk from Alice and thus obtain
SA without revealing SB.

The way out of this difficulty is to construct an EOS protocol such that, from the fact that Bob
knows SA, Alice can deduce SB.

1Footnote added during typesetting: Exchange of Secrets
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To render this feasible, we make a final assumption that if Bob uses SA to read his file then
Alice knows about this and vice versa.

The general problem of exchange of secrets, without the particular setting and assumptions
discussed above, was suggested to me by Richard DeMillo.

2 The EOS Protocol
We assume that Alice has a public key KA and Bob has a public key KB which they can use for
encryption and for digital signatures. Every message sent by Alice to Bob will be signed by her,
using KA, and similarly for Bob.

Alice chooses two large primes p, q and creates a one-time key nA = p · q. She then gives
Bob a message: “The one-time key is nA, signed Alice”. Bob chooses primes p1, q1 and gives
nB = p1 · q1 to Alice in a signed message.

Bob now chooses randomly an x ≤ nA, computes c = x2 mod nA, and gives Alice the message
“EKB

(x) is the encoding by my public key KB of my chosen number, and c is the square mod nA

of that number, signed Bob”.2

Alice who knows the factors p, q of nA calculates an x1 such that x12 = c mod nA. (See [1]
for the square-root extraction algorithm and for the facts used in the next paragraphs.) Alice now
gives Bob the message: “x1 is a square-root mod nA of c, signed Alice”.

Bob calculates the g.c.d (x − x1, nA) = d. With probability 1/2 we have [d = p or d = q], so
that with probability 1/2 Bob now has the factorization nA = p · q. However, since Alice does not
know Bob’s x, she does not know whether Bob has the factorization of nA.

We refer to this mode of transferring information, where the sender does not know whether the
recipient actually received the information, as an oblivious transfer.

Next Bob effects an oblivious transfer of nB to Alice.
Define

νB =

{
0 if (x− x1, nA) = p or q,
1 otherwise.

Thus νB = 0 iff after the above oblivious transfer of the factorization of nA from Alice to Bob,
he knows the factors. Alice’s bit νA is defined in a similar way.

Recall that SA and SB are each a single bit. Bob forms the exclusive-or εB = SB ⊕ νB
(Reader: SB = SB!), and gives it to Alice in a signed message “εB is the exclusive-or of my
secret with my state of knowledge of the factors of nA, signer, Bob.” Knowledge of εB does not
contribute anything to Alice’s ability to access her file.

Similarly, Alice forms εA = SA ⊕ νA and gives it to Bob in a signed message.
We came to the final round of the EOS protocol. Alice places her secret SA as the center bit

in an otherwise random message mA. She then encodes mA as EnA
(mA) = C using any of the

public-key systems which require the factors p, q of nA for decoding. (We may, for example use
the encoding EnA

(mA) = mA
2 mod nA of [1], provided that we have a fixed small prefix of mA

2Footnote added during typesetting: Of course, Bob should use a semantically secure public-key cryptosystem for
encrypting x under KB .
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to distinguish mA among the 4 square roots mod nA of EnA
(mA).) Alice sends dA = EnA

(mA)
to Bob in a signed message.

Bob follows the same steps using SB and nB and sends the encoded result to Alice.

Theorem 1. The above protocol gives, under the assumptions in the Introduction, a solution of
the Exchange of Secrets Problem. The probability that neither side will obtain the other’s secret is
1/4.

Proof. We omit the proof that the signed messages exchanged between Alice and Bob, and the
indelible incorporation of SA and SB in the files, provide each participant with a provable case
against the other, if the other one cheated.

It is clear that if either Alice or Bob stop participation in the EOS protocol before the final
phase, in which case the other one will also stop, then neither can know the other’s secret.

Assume that Alice has given Bob, in the final phase, the encoded secret dA = EnA
(mA). If Bob

in fact knows the factorization nA = p ·q, in which case νB = 0, he can decode dA, findingmA and
SA. If Bob now uses the password (bit) SA to read his file, then, by assumption, Alice will know
this. Again, by assumption, Bob would attempt reading his file only if he knows SA with certainty
(a mistake will destroy the file). Thus Alice knows that νB = 0 and hence that εB = SB⊕νB = SB

so that she knows SB.
If Bob gave Alice dB = EnB

(mB) in the final phase, then the above argument applies to yield
that if Alice reads her file before Bob, then Bob will know SA.

Thus, if either Alice or Bob reads her or his file, the other one will know the password for his
or her file.

The probability, when the protocol was completed, that neither one knows the other’s secret is
(1/2)2 = 1/4. �

Remark 1. In the case that the exchange of secrets has not been effected, it is not possible to
iterate the procedure. One participant, say Alice, may actually know SB after the first round but
deliberately not access her file until after the second round. Bob may not know whether νA was 0
in the first or second round and then will not be able to read his file.

Remark 2. The probability of success of the EOS protocol can be enhanced by modifying the
oblivious transfer of information subprotocol. After receiving nA from Alice, Bob chooses two
numbers x, y ≤ nA and gives Alice the squares x2, y2 mod nA. Alice gives Bob two square roots
x1, y1 mod nA of x2 and y2 respectively. Now Bob has a probability 3/4 of knowing the factoriza-
tion nA = p · q.

When Bob gives Alice εB = SB ⊕ νB, she knows that with probability 3/4, εB = SB. Since we
assume that Alice is determined to guarantee that her file will not be erase, it still follows that she
will not use εB as the password. Rather, as before, she will wait until she either can read SB by
deciphering EnB

(mB), or can infer νB = 0 from the fact that Bob has accessed his file.
The above double iteration of the oblivious transfer of information is also effected from Bob to

Alice. The rest of the EOS protocol is as before.
Each participant has now just a 1/4 probability of not knowing the factorization of the other’s

one-time key. Thus the probability of non-termination of the EOS protocol is (1/4)2 = 1/16.

There is a limit beyond which the above enhancement cannot be carried. If, for example, the
oblivious transfer subprotocol is modified so that Pr[νB = 0] ∼ 1/32,000 then Pr[εB = SB] =
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1− 1/32,000. Now there is a real temptation for Alice to halt the protocol after receiving εB, and
use εB as the password to her file.

3 Conclusion
Let us mention some problems for further research.

The oblivious transfer of information subprotocol is valid even without any of the assumptions
we made in order to make EOS feasible. What other applications can one find for this subprotocol?

Can any of the assumptions we made be relaxed or eliminated without losing the possibility of
EOS?

Is it possible to construct an EOS protocol which will always terminate, or can one prove that
the non-zero probability of non-termination is essential?
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