International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

28 November 2022

Yann Disser, Daniel Günther, Thomas Schneider, Maximilian Stillger, Arthur Wigandt, Hossein Yalame
ePrint Report ePrint Report
A Universal Circuit (UC) is a Boolean circuit of size $\Theta(n \log n)$ that can simulate any Boolean function up to a certain size $n$. Valiant (STOC'76) provided the first two UC constructions of asymptotic sizes $\sim5 n\log n$ and $\sim4.75 n\log n$, and today's most efficient construction of Liu et al. (CRYPTO'21) has size $\sim3n\log n$. Evaluating a public UC with a secure Multi-Party Computation (MPC) protocol allows efficient Private Function Evaluation (PFE), where a private function is evaluated on private data. Most existing UC constructions simulate circuits consisting of 2-input gates.

In this work, we study UCs that simulate circuits consisting of ($\rho \rightarrow \omega$)-Lookup Tables (LUTs) that map $\rho$ inputs to $\omega$ outputs. Existing UC constructions can be easily extend to ($\rho \rightarrow$ 1)-LUTs (we call this the fixed UC construction). We further extend this to ($\rho \rightarrow \omega$)-LUTs. Unfortunately, the size of the fixed UC construction is linear in the largest input size $\rho$ of the LUT, i.e., even if only a single LUT in the circuit has a large input size, the size of the whole UC is dominated by this LUT size. To circumvent this, we design a \emph{dynamic} UC construction, where the dimensions of the individual LUTs are public. We implement the fixed and dynamic UC constructions based on the UC construction by Liu et al., which also is the first implementation of their construction. We show that the concrete size of our dynamic UC construction improves by at least $2\times$ over Liu et al.'s UC for all benchmark circuits, that are representative for many PFE applications.
Expand
Seunghwan Park, Chi-Gon Jung, Aesun Park, Joongeun Choi, Honggoo Kang
ePrint Report ePrint Report
The quantum resistance Key Encapsulation Mechanism (PQC-KEM) design aims to replace cryptography in legacy security protocols. It would be nice if PQC-KEM were faster and lighter than ECDH or DH for easy migration to legacy security protocols. However, it seems impossible due to the temperament of the secure underlying problems in a quantum environment. Therefore, it makes reason to determine the threshold of the scheme by analyzing the maximum bandwidth the legacy security protocol can adapt. We specified the bandwidth threshold at 1,244 bytes based on IKEv2 (RFC7296), a security protocol with strict constraints on payload size in the initial exchange for secret key sharing. We propose TiGER that is an IND-CCA secure KEM based on RLWE(R). TiGER has a ciphertext (1,152bytes) and a public key (928 bytes) smaller than 1,244 bytes, even at the AES256 security level. To our knowledge, TiGER is the only scheme with such an achievement. Also, TiGER satisfies security levels 1, 3, and 5 of NIST competition. Based on reference implementation, TiGER is 1.7-2.6x faster than Kyber and 2.2-4.4x faster than LAC.
Expand
Philipp Hoenisch, Subhra Mazumdar, Pedro Moreno-Sanchez, Sushmita Ruj
ePrint Report ePrint Report
Security and privacy issues with centralized exchange services have motivated the design of atomic swap protocols for decentralized trading across currencies. These protocols follow a standard blueprint similar to the 2-phase commit in databases: (i) both users first lock their coins under a certain (cryptographic) condition and a timeout; (ii-a) the coins are swapped if the condition is fulfilled; or (ii-b) coins are released after the timeout. The quest for these protocols is to minimize the requirements from the scripting language supported by the swapped coins, thereby supporting a larger range of cryptocurrencies. The recently proposed universal atomic swap protocol [IEEE S&P’22] demonstrates how to swap coins whose scripting language only supports the verification of a digital signature on a transaction. However, the timeout functionality is cryptographically simulated with verifiable timelock puzzles, a computationally expensive primitive that hinders its use in battery-constrained devices such as mobile phones. In this state of affairs, we question whether the 2-phase commit paradigm is necessary for atomic swaps in the first place. In other words, is it possible to design a secure atomic swap protocol where the timeout is not used by (at least one of the two) users? In this work, we present LightSwap, the first secure atomic swap protocol that does not require the timeout functionality (not even in the form of a cryptographic puzzle) by one of the two users. LightSwap is thus better suited for scenarios where a user, running an instance of LightSwap on her mobile phone, wants to exchange coins with an online exchange service running an instance of LightSwap on a computer. We show how LightSwap can be used to swap Bitcoin and Monero, an interesting use case since Monero does not provide any scripting functionality support other than linkable ring signature verification.
Expand
Shah Fahd
ePrint Report ePrint Report
A Feistel Network (FN) based block cipher relies on a Substitution Box (S-Box) for achieving the non-linearity. S-Box is carefully designed to achieve optimal cryptographic security bounds. The research of the last three decades shows that considerable efforts are being made on the mathematical design of an S-Box. To import the exact cryptographic profile of an S-Box, the designer focuses on the Affine Equivalent (AE) or Extended Affine (EA) equivalent S-Box. In this research, we argue that the Robustness of surjective mappings is invariant under AE and not invariant under EA transformation. It is proved that the EA equivalent of a surjective mapping does not necessarily contribute to the Robustness against the Differential Cryptanalysis (DC) in the light of Seberry's criteria. The generated EA equivalent S-Box(es) of DES and other $6 \times 4$ mappings do not show a good robustness profile compared to the original mappings. This article concludes that a careful selection of affine permutation parameters is significant during the design phase to achieve high Robustness against DC and Differential Power Analysis (DPA) attacks.
Expand
Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, Nitin Singh
ePrint Report ePrint Report
Traditional notions of secure multiparty computation (MPC) allow mutually distrusting parties to jointly compute a function over their private inputs, but typically do not specify how these inputs are chosen. Motivated by real-world applications where corrupt inputs could adversely impact privacy and operational legitimacy, we consider a notion of authenticated MPC where the inputs are authenticated, e.g., signed using a digital signature by some trusted authority. We propose a generic and efficient compiler that transforms any linear secret sharing based MPC protocol into one with input authentication.

Our compiler incurs significantly lower computational costs and competitive communication overheads when compared to the best existing solutions, while entirely avoiding the (potentially expensive) protocol-specific techniques and pre-processing requirements that are inherent to these solutions. For $n$-party MPC protocols with abort security where each party has $\ell$ inputs, our compiler incurs $O(n\log \ell)$ communication overall and a computational overhead of $O(\ell)$ group exponentiations per party (the corresponding overheads for the most efficient existing solution are $O(n^2)$ and $O(\ell n)$). Finally, for a corruption threshold $t
Along the way, we make several technical contributions that are of independent interest. This includes the notion of distributed proofs of knowledge and concrete realizations of the same for several relations of interest, such as proving knowledge of many popularly used digital signature schemes, and proving knowledge of opening of a Pedersen commitment. We also illustrate the practicality of our approach by extending the well-known MP-SPDZ library with our compiler, thus yielding prototype authenticated MPC protocols.
Expand
Trey Li
ePrint Report ePrint Report
In 1993 Bernstein and Vazirani proposed a quantum algorithm for the Bernstein-Vazirani problem, which is given oracle access to the function $f(a_1,\dots,a_n) = a_1x_1+\cdots + a_nx_n \pmod 2$ with respect to a secret string $x = x_1\dots x_n \in \{0,1\}^n$, where $a_1,\dots,a_n \in \{0,1\}$, find $x$. We give a quantum algorithm for a new problem called the oracle subset product problem, which is given oracle access to the function $f(a_1,\dots,a_n) = a_1^{x_1}\cdots a_n^{x_n}$ with respect to a secret string $x = x_1\dots x_n\in\{0,1\}^n$, where $a_1,\dots,a_n\in \mathbb Z$, find $x$. Similar to the Bernstein-Vazirani algorithm, it is a quantum algorithm for a problem that is originally polynomial time solvable by classical algorithms; and that the advantage of the algorithm over classical algorithms is that it only makes one call to the function instead of $n$ calls.
Expand
Matt Davison, Ken King, Trevor Miller
ePrint Report ePrint Report
The tech industry is currently making the transition from Web 2.0 to Web 3.0, and with this transition, authentication and authorization have been reimag- ined. Users can now sign in to websites with their unique public/private key pair rather than generating a username and password for every site. How- ever, many useful features, like role-based access control, dynamic resource owner privileges, and expiration tokens, currently don’t have efficient Web 3.0 solutions. Our solution aims to provide a flexible foundation for resource providers to implement the aforementioned features on any blockchain through a two-step process. The first step, authorization, creates an on-chain asset which is to be presented as an access token when interacting with a resource. The second step, authentication, verifies ownership of an asset through querying the blockchain and cryptographic digital signatures. Our solution also aims to be a multi-chain standard, whereas current Web 3.0 sign-in standards are limited to a single blockchain.
Expand
Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue
ePrint Report ePrint Report
This paper presents a code-based signature scheme based on the well-known syndrome decoding (SD) problem. The scheme builds upon a recent line of research which uses the Multi-Party-Computation-in-the-Head (MPCitH) approach to construct efficient zero-knowledge proofs, such as Syndrome Decoding in the Head (SDitH), and builds signature schemes from them using the Fiat-Shamir transform.

At the heart of our proposal is a new approach to amplify the soundness of any MPC protocol that uses additive secret sharing. An MPCitH protocol with $N$ parties can be repeated $D$ times using parallel composition to reach the same soundness as a protocol run with $N^D$ parties. However, the former comes with $D$ times higher communication costs, often mainly contributed by the usage of $D$ `auxiliary' states (which in general have a significantly bigger impact on size than random states). Instead of that, we begin by generating $N^D$ shares, arranged into a $D$-dimensional hypercube of side $N$ containing only one `auxiliary' state. We derive from this hypercube $D$ sharings of size $N$ which are used to run $D$ instances of an $N$ party MPC protocol. This approach leads to an MPCitH protocol with $1/N^D$ soundness error, requiring $N^D$ offline computation, only $ND$ online computation, and only $1$ `auxiliary'. As the, potentially offline, share generation phase is generally inexpensive, this leads to trade-offs that are superior to just using parallel composition.

Our novel method of share generation and aggregation not only improves certain MPCitH protocols in general but also shows in concrete improvements of signature schemes. Specifically, we apply it to the work of Feneuil, Joux, and Rivain (CRYPTO'22) on code-based signatures, and obtain a new signature scheme that achieves a 3.3x improvement in global runtime, and a 15x improvement in online runtime for their shortest signatures size (8.5 kB). It is also possible to leverage the fact that most computations are offline to define parameter sets leading to smaller signatures: 6.7 kB for 60 ms offline, or 5.6 kB for 700 ms offline. For NIST security level 1, online signature cost is around 3 million cycles (1 ms on commodity processors), regardless of signature size.
Expand
Matvei Kotov, Alexander Treier, Ivan Buchinskiy
ePrint Report ePrint Report
In this paper, we examine one of the public key exchange protocols proposed in [M. I. Durcheva. An application of different dioids in public key cryptography. In AIP Conference Proceedings, vol. 1631, pp 336-343. AIP, 2014] which uses max-times and min-times algebras. We discuss properties of powers of matrices over these algebras and introduce a fast attack on this protocol.
Expand
James Bartusek, Sanjam Garg, Abhishek Jain, Guru-Vamsi Policharla
ePrint Report ePrint Report
As end-to-end encrypted messaging services become widely adopted, law enforcement agencies have increasingly expressed concern that such services interfere with their ability to maintain public safety. Indeed, there is a direct tension between preserving user privacy and enabling content moderation on these platforms. Recent research has begun to address this tension, proposing systems that purport to strike a balance between the privacy of ''honest'' users and traceability of ''malicious'' users. Unfortunately, these systems suffer from a lack of protection against malicious or coerced service providers.

In this work, we address the privacy vs. content moderation question through the lens of pre-constrained cryptography [Ananth et al., ITCS 2022]. We introduce the notion of set pre-constrained (SPC) group signatures that guarantees security against malicious key generators. SPC group signatures offer the ability to trace users in messaging systems who originate pre-defined illegal content (such as child sexual abuse material), while providing security against malicious service providers.

We construct concretely efficient protocols for SPC group signatures, and demonstrate the real-world feasibility of our approach via an implementation. The starting point for our solution is the recently introduced Apple PSI system, which we significantly modify to improve security and expand functionality.
Expand

25 November 2022

Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, Dionysis Zindros
ePrint Report ePrint Report
Popular Ethereum wallets (e.g., MetaMask) entrust centralized infrastructure providers (e.g., Infura) to run the consensus client logic on their behalf. As a result, these wallets are light-weight and high-performant, but come with security risks. A malicious provider can mislead the wallet, e.g., fake payments and balances, or censor transactions. On the other hand, light clients, which are not in popular use today, allow decentralization, but at inefficient linear bootstrapping complexity. This poses a dilemma between decentralization and performance. In this paper, we design, implement, and evaluate a new proof-of-stake (PoS) superlight client with logarithmic bootstrapping complexity. These proofs of proof-of-stake (PoPoS) take the form of a Merkle tree of PoS epochs. The verifier enrolls the provers in a bisection game, in which the honest prover is destined to win once an adversarial Merkle tree is challenged at sufficient depth. We evaluate our superlight protocol by providing a client implementation that is compatible with mainnet PoS Ethereum: compared to the state-of-the-art light client construction proposed for PoS Ethereum, our client improves time-to-completion by $9\times$, communication by $180\times$, and energy usage by $30\times$ (when bootstrapping after $10$ years of consensus execution). We prove our construction is secure and show how to employ it for other PoS systems such as Cardano (with full adaptivity), Algorand, and Snow White.
Expand
Huina Li, Guozhen Liu, Haochen Zhang, Kai Hu, Jian Guo, Weidong Qiu
ePrint Report ePrint Report
A good differential is a start for a successful differential attack. However, a differential might be invalid, i.e., there is no right pair following the differential1, due to some complicated contradictions that are hard to be considered. In this paper, we present a novel and handy method to search and verify a differential characteristic (DC) based on a recently proposed algebraic perspective on the differential(-linear) cryptanalysis (CRYPTO 2021). From this algebraic perspective, exact Boolean expressions of differentials over a cryptographic primitive can be conveniently established, thus verifying a given DC is naturally a Boolean satisfiability problem (SAT problem). With this observation, our approach simulates the round function of the target cipher symbolically and derives a set of Boolean equations in Algebraic Normal Form (ANF). These Boolean equations can be solved by off-the-shelf SAT solvers such as Bosphorus, which accept ANFs as their input. To demonstrate the power of our new tool, we apply it to Gimli, Ascon, and Xoodoo. For Gimli, we improve the efficiency of searching for a valid 8-round colliding DC compared with the previous MILP model (CRYPTO 2020). Our approach takes about one minute to find a valid 8-round DC, while the previous MILP model could not find any such DCs in practical time. Based on this DC, a practical semi-free-start collision attack on the intermediate 8-round Gimli-Hash is thus successfully mounted, i.e., a colliding message pair is found. For Ascon, we check several DCs reported at FSE 2021. Firstly, we verify a 2-round DC used in the collision attack on Ascon-Hash by giving a right pair (such a right pair requires $2^{156}$ attempts to find in a random search). Secondly, a 4-round differential used in the forgery attack on Ascon-128’s iteration phase is proven invalid, as a result, the corresponding forgery attack is invalid, too. For Xoodoo, we verify tens of thousands of 3-round DCs and two 4-round DCs extended from the so-called differential trail cores found by the designers or our search tool. We find all of these DCs are valid, which well demonstrates the sound independence of the differential propagation over Xoodoo’s round functions. Besides, as an independent interest, we develop a SAT-based automatic search toolkit called XoodooSat to search for 2-, 3-, and 4-round differential trail cores of Xoodoo. Our toolkit finds two more 3-round differential trail cores of weight 48 that were missed by the designers which enhance the security analysis of Xoodoo.
Expand
Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, María Naya-Plasencia
ePrint Report ePrint Report
In this paper we introduce the differential-meet-in-the-middle framework, a new cryptanalysis technique against symmetric primitives. The idea of this new cryptanalysis method consists in combining into one attack techniques from both meet-in-the-middle and differential cryptanalysis. The introduced technique can be seen as a way of extending meet-in-the-middle attacks and their variants but also as a new way to perform the key recovery part in differential attacks. We provide a simple tool to search, given a differential, for efficient applications of this new attack and apply our approach, in combination with some additional techniques, to SKINNY-128-384. Our attack on SKINNY-128-384 permits to break 25 out of the 56 rounds of this variant and improves by two rounds the previous best known attacks in the single key model.
Expand
Alexandre Augusto Giron, João Pedro Adami do Nascimento, Ricardo Custódio, Lucas Pandolfo Perin
ePrint Report ePrint Report
Adopting Post-Quantum Cryptography (PQC) in network protocols is a challenging subject. Larger PQC public keys and signatures can significantly slow the Transport Layer Security (TLS) protocol. In this context, KEMTLS is a promising approach that replaces the handshake signatures by using PQC Key Encapsulation Mechanisms (KEMs), which have, in general, smaller sizes. However, for broad PQC adoption, hybrid cryptography has its advantages over PQC-only approaches, mainly about the confidence in the security of existing cryptographic schemes. This work brings hybrid cryptography to the KEMTLS and KEMTLS-PDK protocols. We analyze different network conditions and show that the penalty when using Hybrid KEMTLS over PQC-only KEMTLS is minor under certain security levels. We also compare Hybrid KEMTLS with a hybrid version of PQTLS. Overall, the benefits of using hybrid protocols outweigh the slowdown penalties in higher security parameters, which encourages its use in practice.
Expand
George Teseleanu
ePrint Report ePrint Report
The study of symmetric structures based on quasigroups is relatively new and certain gaps can be found in the literature. In this paper, we want to fill one of these gaps. More precisely, in this work we study substitution permutation networks based on quasigroups that make use of permutation layers that are non-linear relative to the quasigroup operation. We prove that for quasigroups isotopic with a group $\mathbb{G}$, the complexity of mounting a differential attack against this type of substitution permutation network is the same as attacking another symmetric structure based on $\mathbb{G}$. The resulting structure is interesting and new, and we hope that it will form the basis for future secure block ciphers.
Expand
Aayush Jain, Huijia Lin, Paul Lou, Amit Sahai
ePrint Report ePrint Report
Indistinguishability Obfuscation $(i\mathcal{O})$ is a highly versatile primitive implying a myriad advanced cryptographic applications. Up until recently, the state of feasibility of $i\mathcal{O}$ was unclear, which changed with works (Jain-Lin-Sahai STOC 2021, Jain-Lin-Sahai Eurocrypt 2022) showing that $i\mathcal{O}$ can be finally based upon well-studied hardness assumptions. Unfortunately, one of these assumptions is broken in quantum polynomial time. Luckily, the line work of Brakerski et al. Eurocrypt 2020, Gay-Pass STOC 2021, Wichs-Wee Eurocrypt 2021, Brakerski et al. ePrint 2021, Devadas et al. TCC 2021 simultaneously created new pathways to construct $i\mathcal{O}$ with plausible post-quantum security from new assumptions, namely a new form of circular security of LWE in the presence of leakages. At the same time, effective cryptanalysis of this line of work has also begun to emerge (Hopkins et al. Crypto 2021).

It is important to identify the simplest possible conjectures that yield post-quantum $i\mathcal{O}$ and can be understood through known cryptanalytic tools. In that spirit, and in light of the cryptanalysis of Hopkins et al., recently Devadas et al. gave an elegant construction of $i\mathcal{O}$ from a fully-specified and simple-to-state assumption along with a thorough initial cryptanalysis.

Our work gives a polynomial-time distinguisher on their "final assumption" for their scheme. Our algorithm is extremely simple to describe: Solve a carefully designed linear system arising out of the assumption. The argument of correctness of our algorithm, however, is nontrivial.

We also analyze the "T-sum" version of the same assumption described by Devadas et. al. and under a reasonable conjecture rule out the assumption for any value of $T$ that implies $i\mathcal{O}$.
Expand
Dan Boneh, Chelsea Komlo
ePrint Report ePrint Report
Existing threshold signature schemes come in two flavors: (i) fully private, where the signature reveals nothing about the set of signers that generated the signature, and (ii) accountable, where the signature completely identifies the set of signers. In this paper we propose a new type of threshold signature, called TAPS, that is a hybrid of privacy and accountability. A TAPS signature is fully private from the public's point of view. However, an entity that has a secret tracing key can trace a signature to the threshold of signers that generated it. A TAPS makes it possible for an organization to keep its inner workings private, while ensuring that signers are accountable for their actions. We construct a number of TAPS schemes. First, we present a generic construction that builds a TAPS from any accountable threshold signature. This generic construction is not efficient, and we next focus on efficient schemes based on standard assumptions. We build two efficient TAPS schemes (in the random oracle model) based on the Schnorr signature scheme. We conclude with a number of open problems relating to efficient TAPS.
Expand
Michiel Van Beirendonck, Jan-Pieter D'Anvers, Ingrid Verbauwhede
ePrint Report ePrint Report
Fully Homomorphic Encryption is a technique that allows computation on encrypted data. It has the potential to drastically change privacy considerations in the cloud, but high computational and memory overheads are preventing its broad adoption. TFHE is a promising Torus-based FHE scheme that heavily relies on bootstrapping, the noise-removal tool that must be invoked after every encrypted gate computation.

We present FPT, a Fixed-Point FPGA accelerator for TFHE bootstrapping. FPT is the first hardware accelerator to heavily exploit the inherent noise present in FHE calculations. Instead of double or single-precision floating-point arithmetic, it implements TFHE bootstrapping entirely with approximate fixed-point arithmetic. Using an in-depth analysis of noise propagation in bootstrapping FFT computations, FPT is able to use noise-trimmed fixed-point representations that are up to 50% smaller than prior implementations using floating-point or integer FFTs.

FPT's microarchitecture is built as a streaming processor inspired by traditional streaming DSPs: it instantiates high-throughput computational stages that are directly cascaded, with simplified control logic and routing networks. We explore different throughput-balanced compositions of streaming kernels with a user-configurable streaming width in order to construct a full bootstrapping pipeline. FPT's streaming approach allows 100% utilization of arithmetic units and requires only small bootstrapping key caches, enabling an entirely compute-bound bootstrapping throughput of 1 BS / 35$\mu$s. This is in stark contrast to the established classical CPU approach to FHE bootstrapping acceleration, which tends to be heavily memory and bandwidth-constrained.

FPT is fully implemented and evaluated as a bootstrapping FPGA kernel for an Alveo U280 datacenter accelerator card. FPT achieves almost three orders of magnitude higher bootstrapping throughput than existing CPU-based implementations, and 2.5$\times$ higher throughput compared to recent ASIC emulation experiments.
Expand
Tianyu Zhaolu, Zhiguo Wan, Huaqun Wang
ePrint Report ePrint Report
Recently, fast advances in decentralized blockchains have led to the rapid development of decentralized payment systems and finance. In decentralized anonymous payment systems such as Monero, Zerocash and Zether, payment amounts and traders' addresses are confidential to other users. Therefore, cryptocurrency may be used for illegal activities such as money laundering, bribery and blackmails. To solve this problem, some decentralized anonymous payment schemes supporting regulation have been proposed. Unfortunately, most solutions have no restriction on the regulator's power, which may lead to abuse of power and disclosure of privacy. In this paper, we propose a decentralized anonymous payment scheme supporting collaborative regulation. Different from existing solutions, our scheme prevents abuse of power by dividing the regulatory power into two regulatory authorities. These two regulatory authorities, namely Filter and Supervisor, can cooperate to recover payment amounts and traders' addresses from suspicious transactions. However, neither Filter nor Supervisor alone can decode transactions to obtain transaction privacy. Our scheme enjoys three major advantages over others: 1) We design a generic transaction structure using zk-SNARK, 2) divide regulatory power using the regulation label, 3) and achieve aggregability of transaction amounts using the amount label. The experimental result shows that the time cost of generating a transaction is about 11 s and the transaction fee is about 12,183k gas, which is acceptable.
Expand
Alexandre Belling, Azam Soleimanian
ePrint Report ePrint Report
We present the first transparent and plausibly post-quantum SNARK relying on the Ring Short Integer Solution problem (Ring-SIS), a well-known assumption from lattice-based cryptography. At its core, our proof system relies on a new linear-commitment scheme named Vortex which is inspired from the work of Orion and Brakedown. Vortex uses a hash function based on Ring-SIS derived from “SWIFFT" (Lyubashevsky et al., FSE08). We take advantage of the linear structure of this particular hash function to craft an efficient self-recursion technique. Although Vortex proofs have $O(\sqrt{n})$ size in the witness size, we show how our self-recursion technique can be used to build a SNARK scheme based on Vortex. The resulting SNARK works over any field with reasonably large 2-adicity (also known as FFT-friendly fields). Moreover, we introduce Wizard-IOP, an extension of the concept of polynomial-IOP. Working with Wizard-IOP rather than separate polynomial-IOPs provides us with a strong tool for handling a wide class of queries, needed for proving the correct executions of the complex state machines (e.g., zk-EVM as our use-case) efficiently and conveniently.
Expand
◄ Previous Next ►