IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
18 June 2020
Erica Blum, Chen-Da Liu-Zhang, Julian Loss
A natural question is whether there exists a protocol for MPC that can tolerate up to $t_s < n/2$ corruptions under a synchronous network and $t_a < n/3$ corruptions even when the network is asynchronous. We answer this question by showing tight feasibility and impossibility results. More specifically, we show that such a protocol exists if and only if $t_a + 2t_s < n$ and the number of inputs taken into account under an asynchronous network is at most $n-t_s$.
Peter Chvojka, Tibor Jager, Daniel Slamanig, Christoph Striecks
We observe that viewing HTLPs as homomorphic TRE gives rise to a simple generic construction that avoids the homomorphic evaluation on the puzzles and thus the restriction of relying on sequential squaring. It can be instantiated based on any TLP, such as those based on one-way functions and the LWE assumption (via randomized encodings), while providing essentially the same functionality for applications. Moreover, it overcomes the limitation of the approach of Malavolta and Thyagarajan that, despite the homomorphism, one puzzle needs to be solved per decrypted ciphertext. Hence, we obtain a ``solve one, get many for free'' property for an arbitrary amount of encrypted data, as we only need to solve a single puzzle independent of the number of ciphertexts. In addition, we introduce the notion of incremental TLPs as a particularly useful generalization of TLPs, which yields particularly practical (homomorphic) TRE schemes. Finally, we demonstrate various applications by firstly showcasing their cryptographic application to construct dual variants of timed-release functional encryption and also show that we can instantiate previous applications of HTLPs in a simpler and more efficient way.
Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, Yosuke Todo
Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler
In this work, we present the first (poly)-logarithmic, potentially post-quantum zero-knowledge arguments that deviate from the PCP approach. At the core of succinct zero-knowledge proofs are succinct commitment schemes (in which the commitment and the opening proof are sub-linear in the message size), and we propose two such constructions based on the hardness of the (Ring)-Short Integer Solution (Ring-SIS) problem, each having certain trade-offs. For commitments to $N$ secret values, the communication complexity of our first scheme is $\tilde{O}(N^{1/c})$ for any positive integer $c$, and $O(\log^2 N)$ for the second. Both of these are a significant theoretical improvement over the previously best lattice construction by Bootle et al. (CRYPTO 2018) which gave $O(\sqrt{N})$-sized proofs.
Suvradip Chakraborty, Harish Karthikeyan, Adam O'Neill, C. Pandu Rangan
Our goal is to provide a general security model for continual leakage with deterministic key updates, and constructions that improve in various respects on prior work. In fact, as described below we incorporate forward security into our model as well. For our basic security model we take an \emph{entropy-based} approach, leading to a model we call \emph{entropic continual leakage} (ECL). In the ECL model, the adversary is allowed to make a limited total number of leakage queries that, as in CL, can depend arbitrarily on other keys (in particular, we do not completely bar the leakage function from ``computing the update procedure''), but an \emph{unlimited} total number of what we call ``local'' leakage queries. The latter does not decrease computational entropy of other keys. Hence, in some sense, the local leakage queries do not compute the key update procedure. Another major benefit of allowing deterministic key updates is that we can more readily incorporate forward security (FS) in our constructions, recently pointed out by Bellare \emph{et al.} (CANS 2017) to be an important security hedge in this context. This is because techniques for achieving FS often require deterministic updates. Accordingly, we also introduce the FS+ECL model (which is in fact incomparable to the CL model). We target this enhanced model for our constructions and provide constructions of public-key encryption (based on non-interactive key exchange) and digital signatures (based on identification schemes) that improve over the assumptions or leakage rates of the FS+CL schemes of Bellare \emph{et al.}. These results demonstrate the feasibility of improved constructions in our more realistic model. Finally, as a result of independent interest, we present a public-key encryption scheme in the FS+CL model (with randomized update) that improves on both the assumptions and leakage rates compared to the scheme of Bellare \emph{et al}.
Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, Jae Hong Seo
Benoît Cogliati, Jacques Patarin
17 June 2020
Pozna?, Poland, 14 June - 17 June 2021
Submission deadline: 5 February 2021
Notification: 5 April 2021
Be ys Pay France
Be-ys creates and monitors digital solutions for sensitive data processing in demanding business sectors such as healthcare and banking.
We are the national leader in data security, which is expanding internationally and deploying its solutions using state-of-the-art technologies.
We are now looking for new talents to strengthen our leading position and continue bringing innovation to the market.
Job Description
Our Be ys Pay subsidiary has created worldwide payment solutions. Our aim is to develop disruptive technologies for bank payment systems with smart card, mobile device and Blockchain. As part of its development, we are looking for a Software Developer for Payment Systems.
As part of an expert team dedicated to the payment technology, smart card, blockchain, cryptography and cryptography business sectors, your main tasks will be to develop products in C, C++, Java and NodeJS languages for smart card personalization, payment transaction authorization, token generation/validation and wallets for mobile devices.
You will be responsible for the development and implementation of algorithms, protocols and applications for PC or mobile devices for smart card issuance, as well as the development of solutions for the validation and generation of tokens for banking payment systems.
Profile description
• You have a 5-year degree in engineering, development and/or crypto
• You have an excellent knowledge of C, C++, Java and cryptography.
• Knowledge of payment technology with EMV standard and Blockchain would be a plus.
• You enjoy working as part of a team and working collaboratively in an agile mode.
• You are autonomous, proactive and have an interest in experimenting.
• You like innovation and enjoy working in a constantly changing environment.
• You must be fluent in English (written and spoken).
Closing date for applications:
Contact: Above all, we are looking for potential. We believe that passion for the job and skills are the key to a successful employee.
We transform your energy into talent.
To apply, please send your resume to: recrutement@almerys.com
Grenoble INP LCIS
Closing date for applications:
Contact: vincent.beroulle(at)lcis.grenoble-inp.fr; paolo.maistri(at)univ-grenoble-alpes.fr
More information: https://lcis.grenoble-inp.fr/medias/fichier/clam-thesis-subject-lcis-valence-en-_1592239520450-pdf?ID_FICHE=559219&INLIN
Uppsala University
Closing date for applications:
Contact: Christian Rohner (christian.rohner@it.uu.se)
More information: https://uu.se/en/about-uu/join-us/details/?positionId=325568
Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany
Closing date for applications:
Contact: Dr. Farhad Merchant (farhad.merchant@ice.rwth-aachen.de)
More information: https://www.ice.rwth-aachen.de/institute/jobs/job-offer-research-assistant-phd-student-for-bionanolock-project-1/
Michiel Van Beirendonck, Jan-Pieter D'Anvers, Angshuman Karmakar, Josep Balasch, Ingrid Verbauwhede
Mojtaba Rafiee, Shahram Khazaei
Yusuke Naito
In this paper, we consider PMAC with three powering-up masks that uses three random values for the masking scheme. We show that the PMAC has the tight upper bound $O(q^2/2^n)$ for PRF-security, which answers the open problem (1), and the tight upper bound $O(q_m^2/2^n + q_v/2^n)$ for MAC-security, which answers the open problem (2). Note that these results deal with two-key PMAC, thus showing tight upper bounds of PMACs with single-key and/or with two (or one) powering-up masks are open problems.
Jonathan Katz, Julian Loss, Jiayu Xu
We give the first hardness result about the sequential squaring conjecture. Namely, we show that even in (a quantitative version of) the algebraic group model, any speed up of sequential squaring is as hard as factoring~$N$.
We then focus on \emph{timed commitments}, one of the most important primitives that can be obtained from time-locked puzzles. We extend existing security definitions to settings that may arise when using timed commitments in higher-level protocols. We then give the first construction of \emph{non-malleable} timed commitments. As a building block of independent interest, we also define (and give constructions for) a new primitive called \emph{time-released public-key encryption}.
Melissa Chase, Peihan Miao
Underlying our PSI protocol is a new lightweight multi-point oblivious pesudorandom function (OPRF) protocol based on oblivious transfer (OT) extension. We believe this new protocol may be of independent interest.
Jan Jancar, Vladimir Sedlacek, Petr Svenda, Marek Sys
The number of signatures needed for a successful attack depends on the chosen method and its parameters as well as on the noise profile, influenced by the type of leakage and used computation platform. We use the set of vulnerabilities reported in this paper, together with the recently published TPM-FAIL vulnerability as a basis for real-world benchmark datasets to systematically compare our newly proposed methods and all previously published applicable lattice-based key recovery methods. The resulting exhaustive comparison highlights the methods' sensitivity to its proper parametrization and demonstrates that our methods are more efficient in most cases. For the TPM-FAIL dataset, we decreased the number of required signatures from approximately 40 000 to mere 900.