IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
25 May 2021
Paul Cotan, George Teseleanu
Jesús-Javier Chi-Domínguez, Francisco Rodríguez-Henríquez, Benjamin Smith
Hector B. Hougaard
Keywords: Feistel, non-abelian group, pseudorandom.
Jinyu Lu, Yunwen Liu, Tomer Ashur, and Chao Li
Tianyi Liu, Xiang Xie, Yupeng Zhang
Underlying zkCNN is a new sumcheck protocol for proving fast Fourier transforms and convolutions with a linear prover time, which is even faster than computing the result asymptotically. We also introduce several improvements and generalizations on the interactive proofs for CNN predictions, including verifying the convolutional layers, the activation function of ReLU and the max pooling. Our scheme is highly efficient in practice. It can scale to the large CNN of VGG16 with 15 million parameters and 16 layers. It only takes 163 seconds to generate the proof, which is 1000x faster than existing schemes. The proof size is 230 kilobytes, and the verifier time is only 172 milliseconds. Our scheme can further scale to prove the accuracy of the same CNN on 100 images.
Pedro Hecht
Atsuki Momose, Ling Ren
Farid Javani, Alan T. Sherman
David Cerezo Sánchez
- Bitcoins limited adoption problem: as transaction demand grows, payment confirmation times grow much lower than other PoW blockchains
- higher transaction security at a lower cost
- more decentralisation than other permissionless blockchains
- impossibility of full decentralisation and the blockchain scalability trilemma: decentralisation, scalability, and security can be achieved simultaneously
- Sybil-resistance for free implementing the social optimum
- Pravuil goes beyond the economic limits of Bitcoin or other PoW/PoS blockchains, leading to a more valuable and stable crypto-currency
Gyeongju Song, Kyungbae Jang, Hyunji Kim, Wai-Kong Lee, Zhi Hu, Hwajeong Seo
Hyeokdong Kwon, Hyunjun Kim, Eum Si Woo, Minjoo Shim, Wai-Kong Lee, Zhi Hu, Hwajeong Seo
Ahad Niknia, Miguel Correia, Jaber Karimpour
Pierrick Méaux
Handong Cui, Tsz Hon Yuen
In this paper, we first formalize the definition and security proof of class group based GQ signature (CL-GQ), which eliminates the trapdoor in key generation phase and improves the bandwidth efficiency from the RSA-based GQ signature. Then, we construct a trustless GQ multi-signature scheme by applying non-malleable equivocable commitments and our well-designed compact non-interactive zero-knowledge proofs (NIZK). Our scheme has a well-rounded performance compared to existing multiparty GQ, Schnorr and ECDSA schemes, in the aspects of bandwidth (no range proof or multiplication-to-addition protocol required), rather few interactions (only 4 rounds in signing), provable security in \textit{dishonest majority model} and identifiable abort property. Another interesting finding is that, our NIZK is highly efficient (only one round required) by using the Bezout formula, and this trick can also optimize the ZK proof of Paillier ciphertext which greatly improves the speed of Yi's Blind ECDSA (AsiaCCS 2019).
Nils Albartus, Clemens Nasenberg, Florian Stolz, Marc Fyrbiak, Christof Paar, Russell Tessier
We introduce the design of a microcoded RISC-V processor architecture together with a microcode development and evaluation environment. Even though microcode typically has almost complete control of the processor hardware, the design of meaningful microcode Trojans is not straightforward. This somewhat counter-intuitive insight is due to the lack of information at the hardware level about the semantics of executed software. In three security case studies we demonstrate how to overcome these issues and give insights on how to design meaningful microcode Trojans that undermine system security. To foster future research and applications, we publicly release our implementation and evaluation platform.
Ruben Gonzalez, Andreas Hülsing, Matthias J. Kannwischer, Juliane Krämer, Tanja Lange, Marc Stöttinger, Elisabeth Waitz, Thom Wiggers, Bo-Yin Yang
Ling Sun, Wei Wang, Meiqin Wang
Lei Fan, Jonathan Katz, Phuc Thai, Hong-Sheng Zhou
We are inspired by Bitcoin's ``block-by-block'' design, and we show that a direct and natural mimic of Bitcoin's design via proof-of-stake is secure if the majority 73\% of stake is honest. Our result relies on an interesting upper bound of extending proof-of-stake blockchain we establish: players (who may extend all chains) can generate blockchain at most $2.72\times$ faster than playing the basic strategy of extending the longest chain.
We introduce a novel strategy called ``D-distance-greedy'' strategy, which enables us to construct a class of secure proof-of-stake blockchain protocols, against an \textbf{arbitrary} adversary, even assuming much smaller (than 73\% of) stake is honest. To enable a thorough security analysis in the cryptographic setting, we develop several new techniques: for example, to show the chain growth property, we represent the chain extension process via a Markov chain, and then develop a random walk on the Markov chain; to prove the common prefix property, we introduce a new concept called ``virtual chains'', and then present a reduction from the regular version of common prefix to ``common prefix w.r.t. virtual chains''.
Finally, we note that, ours is the first ``block-by-block'' style of proof-of-stake in the permissionless setting, naturally mimicking Bitcoin's design; it turns out that this feature, again allows us to achieve the ``best possible'' unpredictability property. Other existing provably secure permissionless proof-of-stake solutions are all in an ``epoch-by-epoch'' style, and thus cannot achieve the best possible unpredictability.
21 May 2021
Nishant was born on 22 Feb 1985. He completed his Bachelor's in 2009 from Biju Patnaik University of Technology, Odisha, in Computer Science and Engineering. He next post-graduated from the Centre for Development of Advanced Computing in 2012. He had a brief stint as an Assistant professor from April 2012 to Dec 2014. In the year 2015, he joined Indian Institute of Technology Roorkee for Ph. D., which he completed by the year 2018. During this time he was collaborating with Indian Statistical Institute, Kolkata too. His area of research was Cryptanalysis on Symmetric Ciphers. After the PhD he joined Robert Bosch Engineering and Business Solutions at Bangalore, where he surprised everybody by a remarkable transformation from a Cryptology Researcher to a Security Practitioner. We remember working with Nishant both in Academia and Industry. A link to his publication is at https://dblp.org/pid/07/201-3.html .
Nishant is missed by each of his colleagues. During the cryptology conferences and workshops in India, participants from all over the world were greeted by Nishant with his big and bright smile. That is why we think Nishant should be remembered at the IACR webpage. Our heart reaches out to his family - his mother, sister, wife and little baby daughter. We pray God almighty gives them the strength to overcome these difficult times. In the short span Nishant made his brilliance known to all of us. No doubt he leaves a void that we will never be able to fill. Yet we shall be guided and inspired by him especially his simplicity and ability to handle complicated things. May our friend find peace.
Sugata (IIT Roorkee), Shashwat (Bosch), Subhamoy (ISI Kolkata)
Aalborg University, Department of Mathematical Sciences, Aalborg, Denmark
At the Faculty of Engineering and Science, Department of Mathematical Sciences one or more positions as Assistant Professor in Discrete Mathematics is open for appointment from 1st September 2021 or soon hereafter. The position is available for a period of three years. The Department of Mathematical Sciences houses three education programs, Mathematics, Mathematics-Economics, and Mathematics- Technology. Furthermore, several courses for programs in Engineering and Social Sciences are taught by the Department of Mathematical Sciences. Aalborg University is comprised of three campuses, Aalborg, Esbjerg, and Copenhagen. Teaching responsibilities may include courses at any of the three campuses. For more information about the department, please see: https://www.math.aau.dk/
JOB DESCRIPTIONResearch areas will be within Coding Theory and Cryptography. A selected candidate will have a proven track record of promising research within Coding Theory, Cryptography, or related subjects in Discrete Mathematics.
The ability to contribute to the development of external collaboration and to secure external funding will be taken into account and the applicant is expected to have very good interpersonal skills. Special contributions to the development of educational and teaching related activities will be considered in the overall assessment. The selected candidate is expected to engage in acquiring external funding for research. This will involve collaboration with colleagues from the mathematics department and from other departments at Aalborg University. This includes funding for both theoretical research and for more applied and strategic research activities. Teaching will primarily be in the three mathematical programmes, but also in other study programmes at the university.
Please visit https://www.stillinger.aau.dk to see the full call text and to apply
Closing date for applications:
Contact: You may obtain further professional information from Professor Horia Cornean, phone: +45 9940 8879, e-mail: cornean@math.aau.dk or Head of Department Søren Højsgaard, phone: +45 9940 8801, e-mail: sorenh@math.aau.dk
More information: https://www.stillinger.aau.dk/vis-stilling/?vacancy=1150397