IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
11 February 2025
Shivam Bhasin, Dirmanto Jap, Marina Krček, Stjepan Picek, Prasanna Ravi
Cruz Barnum, David Heath
This work proposes a framework for reasoning about input-adaptive primitives: adaptive distributional security (ADS). Roughly, an ADS primitive provides security when it is used with inputs drawn from one of two distributions that are themselves hard to distinguish. ADS is useful as a framework for the following reasons: - An ADS definition can often circumvent impossibility results imposed on the corresponding simulation-based definition. This allows us to decrease the online-cost of primitives, albeit by using a weaker notion of security. - With care, one can typically upgrade an ADS-secure object into a simulation-secure object (by increasing cost in the online-phase). - ADS is robust, in the sense that (1) it enables a form of composition and (2) interesting ADS primitives are highly interconnected in terms of which objects imply which other objects. - Many useful ADS-secure objects are plausibly secure from straightforward symmetric-key cryptography.
We start by defining the notion of an ADS encryption (ADE) scheme. A notion of input-adaptive encryption can be easily achieved from RO, and the ADE definition can be understood as capturing the concrete property provided by RO that is sufficient to achieve input-adaptivity. From there, we use ADE to achieve ADS variants of garbled circuits and oblivious transfer, to achieve simulation-secure garbled circuits, oblivious transfer, and two-party computation, and prove interconnectedness of these primitives. In sum, this results in a family of objects with extremely cheap online-cost.
10 February 2025
Madrid, Spain, 3 April - 3 May 2025
Submission deadline: 14 March 2025
Jad Silbak, Daniel Wichs
$\textbf{Selective Security under LWE:}$ Under the learning with errors (LWE) assumption, we construct selectively secure codes over the binary alphabet. For error detection, our codes achieve essentially optimal rate $R \approx 1$ and relative error tolerance $\rho \approx \frac{1}{2}$. For error correction, they can uniquely correct $\rho < 1/4$ relative errors with a rate $R$ that essentially matches that of the best list-decodable codes with error tolerance $\rho$. Both cases provide significant improvements over information-theoretic counterparts. The construction relies on a novel form of 2-input correlation intractable hash functions that we construct from LWE.
$\textbf{Adaptive Security via Crypto Dark Matter:}$ Assuming the exponential security of a natural collision-resistant hash function candidate based on the ``crypto dark matter'' approach of mixing linear functions over different moduli, we construct adaptively secure codes over the binary alphabet, for both error detection and correction. They achieve essentially the same trade-offs between error tolerance $\rho$ and rate $R$ as above, with the caveat that for error-correction they only do so for sufficiently small values of $\rho$.
Madhurima Mukhopadhyay
Nan Wang, Qianhui Wang, Dongxi Liu, Muhammed F. Esgin, Alsharif Abuadbba
We provide the first thorough analysis of a recently developed Any-out-of-N proof in the discrete logarithm (DLOG) setting and the associated RingCT scheme, introduced by ZGSX23 (S&P '23). The proof conceals the number of the secrets to offer greater anonymity than K-out-of-N proofs and uses an efficient "K-Weight" technique for its construction. However, we identify for the first time several limitations of using Any-out-of-N proofs, such as increased transaction sizes, heightened cryptographic complexities and potential security risks. These limitations prevent them from effectively mitigating the longstanding scalability bottleneck.
We then continue to explore the potential of using K-out-of-N proofs to enhance scalability of RingCT schemes. Our primary innovation is a new DLOG-based RingCT signature that integrates a refined "K-Weight"-based K-out-of-N proof and an entirely new tag proof. The latter is the first to efficiently enable the linkability of RingCT signatures derived from the former, effectively resisting double-spending attacks.
Finally, we identify and patch a linkability flaw in ZGSX23's signature. We benchmark our scheme against this patched one to show that our scheme achieves a boost in scalability, marking a promising step forward.
Huck Bennett, Drisana Bhatia, Jean-François Biasse, Medha Durisheti, Lucas LaBuff, Vincenzo Pallozzi Lavorante, Philip Waitkevich
Maher Mamah
Marcel Nageler, Shibam Ghosh, Marlene Jüttler, Maria Eichlseder
Orfeas Stefanos Thyfronitis Litos, Zhaoxuan Wu, Alfredo Musumeci, Songyun Hu, James Helsby, Michael Breza, William Knottenbelt
We propose a novel blockchain-based data structure which forgoes replication without affecting the append-only nature of blockchains, making it suitable for maintaining data integrity over networks of storage-constrained devices. Our solution does not provide consensus, which is not required by our motivating application, namely securely storing sensor data of containers in cargo ships.
We elucidate the practical promise of our technique by following a multi-faceted approach: We (i) formally prove the security of our protocol in the Universal Composition (UC) setting, as well as (ii) provide a small-scale proof-of-concept implementation, (iii) a performance simulation for large-scale deployments which showcases a reduction in storage of more than $1000$x compared to traditional blockchains, and (iv) a resilience simulation that predicts the practical effects of network jamming attacks.
Apostolos Mavrogiannakis, Xian Wang, Ioannis Demertzis, Dimitrios Papadopoulos, Minos Garofalakis
Zhiyuan An, Fangguo Zhang
Max Duparc, Mounir Taha
These two blinding mechanisms are nicely compatible with each other's and, when combined, provide enhanced resistance against side-channel attacks, both classical and soft analytical, as well as fault injection attacks, while maintaining high performance and low overhead, making the approach well-suited for practical applications, particularly in resource-constrained IoT environments.
Di Wu, Shoupeng Ren, Yuman Bai, Lipeng He, Jian Liu, Wu Wen, Kui Ren, Chun Chen
07 February 2025
Virtual event, Anywhere on Earth, 5 February - 15 March 2025
Virtual event, Anywhere on Earth, -
Submission deadline: 15 March 2025
Virtual event, Anywhere on Earth, -
Submission deadline: 15 March 2025
Nominations for the 2025 Test-of-Time award (for papers published in 2010) will be accepted until Feb 28, 2025.
Details for the nomination process can be found here: https://www.iacr.org/testoftime/nomination.html
Madrid, España, 3 May 2025
Submission deadline: 20 February 2025
Notification: 7 March 2025
Chalmers University of Technology, Gothenburg, Sweden
We are looking for a PhD student to join the Crypto Team and Security Group at Chalmers with Christoph Egger as main supervisor. The position is fully funded for 5 years and comes with 20% teaching duties in the department. The Crypto Team currently has 2 faculty members and 4 PhD students and is embedded in the security group that captures a wide range of topics.
Depending on the interests of the applicant, possible research topics include fine-grained and bounded space cryptography, realization of idealized models, relationship between cryptographic notions, and similar topics in foundational cryptography. Exploring connections to statistical security notions and formal methods is possible. One or two extended research visits are encouraged during the doctoral study.
Applicants should have a strong interest in the mathematical analysis of algorithms in general and cryptography in particular. A master's degree in mathematics, computer science, or a related discipline is required. The working language in the department is English, and applicants are expected to be fluent both in written and spoken English. Swedish courses are available for interested students.
- In Bounded Space Cryptography we are working with adversaries that are not restricted in their runtime but have limited memory and are trying to achieve basic cryptographic tasks that are secure against such adversaries.
- Idealized Models are simplifications made in proofs for real-world cryptographic protocols. We often know that this is an oversimplification in general and can hide attacks. We are interested in studying under which circumstances the simplifications can be justified.
- Cryptography relies on unproven assumptions like the hardness of factoring. Studying Relations between Cryptographic Notions asks the question of the type "If I can build public key encryption, can I also always have signature schemes?" and proves whether such statements are true or false.
Closing date for applications:
Contact: Christoph Egger, christoph.egger@chalmers.se
More information: https://www.chalmers.se/en/about-chalmers/work-with-us/vacancies/?rmpage=job&rmjob=p13670