IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
10 June 2025
Hao Chung, Elisaweta Masserova, Elaine Shi, Sri AravindaKrishnan Thyagarajan
Atomic swaps enable asset exchanges across blockchains without relying on trusted intermediaries, and are a key component of decentralized finance (DeFi) ecosystems. Recently, Chung, Masserova, Shi, and Thyagarajan introduced Rapidash (Financial Cryptography 2025), an atomic swap protocol that remains incentive compatible under user-miner collusion, by ensuring that the honest strategy forms a coalition-resistant Nash equilibrium. However, their model assumes a closed system where players act solely based on internal protocol incentives. In practice, participants may be influenced by external incentives such as off-chain rewards or adversarial bribes, which can undermine such equilibrium guarantees.
In this work, we introduce a new game-theoretic notion, bounded maximin fairness, which ensures that honest participants remain protected against rational adversaries with arbitrary but bounded external incentives. We construct an atomic swap protocol that satisfies this notion, while preserving the equilibrium properties of prior work in the absence of external influence.
As we show, our protocol is easy to implement and can be instantiated even in Bitcoin’s limited scripting language.
In this work, we introduce a new game-theoretic notion, bounded maximin fairness, which ensures that honest participants remain protected against rational adversaries with arbitrary but bounded external incentives. We construct an atomic swap protocol that satisfies this notion, while preserving the equilibrium properties of prior work in the absence of external influence.
As we show, our protocol is easy to implement and can be instantiated even in Bitcoin’s limited scripting language.
Thibauld Feneuil, Matthieu Rivain
Zero-knowledge proofs (ZKPs) are a fundamental building block in cryptography, enabling powerful privacy-preserving and verifiable computations. In the post-quantum era, hash-based ZKPs have emerged as a promising direction due to their conjectured resistance to quantum attacks, along with their simplicity and efficiency.
In this work, we introduce SmallWood, a hash-based polynomial commitment scheme (PCS) and zero-knowledge argument system optimized for relatively small instances. Building on the recent degree-enforcing commitment scheme (DECS) from the Threshold-Computation-in-the-Head (TCitH) framework, we refine its formalization and combine it with techniques from Brakedown. This results in a new hash-based PCS that is particularly efficient for polynomials of relatively small degree —typically up to $2^{16}$— outperforming existing approaches in this range.
Leveraging this new PCS, we design a hash-based zero-knowledge argument system that outperforms the state-of-the-art in terms of proof sizes for witness size ranging from $2^6$ to $2^{16}$. Additionally, we present exact zero-knowledge arguments for lattice-based problems using SmallWood, demonstrating highly competitive performance: our scheme yields proof sizes under 25 KB across a wide range of lattice parameters, including Kyber and Dilithium instances.
In this work, we introduce SmallWood, a hash-based polynomial commitment scheme (PCS) and zero-knowledge argument system optimized for relatively small instances. Building on the recent degree-enforcing commitment scheme (DECS) from the Threshold-Computation-in-the-Head (TCitH) framework, we refine its formalization and combine it with techniques from Brakedown. This results in a new hash-based PCS that is particularly efficient for polynomials of relatively small degree —typically up to $2^{16}$— outperforming existing approaches in this range.
Leveraging this new PCS, we design a hash-based zero-knowledge argument system that outperforms the state-of-the-art in terms of proof sizes for witness size ranging from $2^6$ to $2^{16}$. Additionally, we present exact zero-knowledge arguments for lattice-based problems using SmallWood, demonstrating highly competitive performance: our scheme yields proof sizes under 25 KB across a wide range of lattice parameters, including Kyber and Dilithium instances.
Sebastian Faller, Julia Hesse
An oblivious pseudorandom function (OPRF) is a cryptographic tool that enables fast and secure authentication and key derivation from passwords. In the past few years, the adoption of OPRFs has flourished and today they are at the core of the PIN-protected backup methods of WhatsApp and Signal, and of privacy-enhancing browser technologies. All vendors deploy the so-called 2Hash-Diffie-Hellman (2HashDH) OPRF, which relies on discrete-logarithm-type assumptions that are standard yet known to be prone to quantum attacks.
Recent advancements in cryptographic research (e.g., Dodgson et al., Eurocrypt 2025) have brought up post-quantum OPRFs that are fast enough to deploy them in the setting of, e.g., WhatsApp or Signal. Yet none of these constructions %that achieves the required level of security e.g., for WhatsApps backup protocol are based on standard assumptions.
In this work, we investigate combiners for OPRFs, namely a ``best-of-both'' combination of a classical and a post-quantum OPRF that is secure as long as one of them is. First, we give formal evidence that so-called black-box combiners do not exist, indicating that combining OPRFs is subtle and bears similarities with other powerful yet hard-to-combine cryptographic primitives like oblivious transfer (OT).
We then give a (non-black-box) combiner for OPRFs and show that it can be instantiated with 2HashDH and the currently most efficient post-quantum OPRFs based on Legendre symbols. In particular, the reliance on the less standard Legendre-based hardness assumption does not harm the security of 2HashDH. This gives vendors a viable path to lift the security of their OPRF deployments to a post-quantum level.
Recent advancements in cryptographic research (e.g., Dodgson et al., Eurocrypt 2025) have brought up post-quantum OPRFs that are fast enough to deploy them in the setting of, e.g., WhatsApp or Signal. Yet none of these constructions %that achieves the required level of security e.g., for WhatsApps backup protocol are based on standard assumptions.
In this work, we investigate combiners for OPRFs, namely a ``best-of-both'' combination of a classical and a post-quantum OPRF that is secure as long as one of them is. First, we give formal evidence that so-called black-box combiners do not exist, indicating that combining OPRFs is subtle and bears similarities with other powerful yet hard-to-combine cryptographic primitives like oblivious transfer (OT).
We then give a (non-black-box) combiner for OPRFs and show that it can be instantiated with 2HashDH and the currently most efficient post-quantum OPRFs based on Legendre symbols. In particular, the reliance on the less standard Legendre-based hardness assumption does not harm the security of 2HashDH. This gives vendors a viable path to lift the security of their OPRF deployments to a post-quantum level.
Giulia Gaggero, Elisa Gorla, Daniel Cabarcas
In this note, we provide proven estimates for the complexity of the SupportMinors Modeling, mostly confirming the heuristic complexity estimates contained in the original article.
Amin Setayesh, Cheran Mahalingam, Emily Chen, Sujaya Maiyya
We present Treebeard - the first scalable and fault tolerant Oblivious RAM (ORAM) based datastore designed to protect applications from access pattern attacks. Current ORAM systems face challenges in practical adoption due to their limited ability to handle concurrent workloads, scale effectively, and ensure fault tolerance. We address all three limitations in Treebeard by utilizing a multi-layer architecture that scales horizontally, handling thousands of requests in parallel, while replicating the data to prevent data loss upon failures. Experimental evaluation demonstrates Treebeard's ability to scale linearly, achieving a throughput of 160K ops/sec with 16 machines; this behavior is similar to the enclave-based state-of-the-art, Snoopy. Being fault-tolerant, Treebeard recovers from failures with close to zero downtime and achieves 13.8x the throughput of QuORAM, the latest fault tolerant ORAM system, even without scaling.
Zhengyuan Su, Qi Pang, Simon Beyzerov, Wenting Zheng
Abstract
Secure two-party computation (2PC) is a cryptographic technique that enables two mutually distrusting parties to jointly evaluate a function over their private inputs. We consider a 2PC primitive called confidential lookup table (LUT) evaluation, which is useful in privacy-preserving ML inference and data analytics. In this setting, a server holds a confidential LUT and evaluates it over an input secret-shared between a client and the server, producing a secret-shared output. Existing approaches for 2PC LUT evaluation suffer from high asymptotic complexity and practical inefficiency, with some designs lacking confidentiality guarantees for the LUT. Recognizing that many applications involving confidential LUT evaluation require processing multiple inputs with the same LUT, we propose FABLE, a system designed to efficiently evaluate a LUT on a large batch of queries simultaneously. Compared to the state-of-the-art confidential LUT evaluation methods, FABLE achieves up to 28.46-101.47$\times$ speedup in LAN environments and up to 50.10-392.93$\times$ speedup in WAN environments.
Katharina Boudgoust, Oleksandra Lapiha
In this work, we propose a novel systematic approach for obtaining leftover hash lemmas (LHLs) over cyclotomic rings. Such LHLs build a fundamental tool in lattice-based cryptography, both in theoretical reductions as well as in the design of cryptographic primitives. The scattered set of prior works makes it difficult to navigate the landscape and requires a substantial effort to understand the mathematical constraints under which the LHL holds over cyclotomic rings. This is especially painful if one’s given setting does not fit exactly into prior studies.
We argue that all prior approaches boil down to two different proof strategies, resulting in two main theorems. From there on, we are able to recover all previous flavours of seemingly independent LHLs as corollaries. Moreover, we showcase the power of our interpretation by providing new statements, covering mathematical settings not considered before. Our work further proves LHLs in the presence of leakage for both approaches and provides novel bounds for wide families of leakage functions.
We argue that all prior approaches boil down to two different proof strategies, resulting in two main theorems. From there on, we are able to recover all previous flavours of seemingly independent LHLs as corollaries. Moreover, we showcase the power of our interpretation by providing new statements, covering mathematical settings not considered before. Our work further proves LHLs in the presence of leakage for both approaches and provides novel bounds for wide families of leakage functions.
Maiara F. Bollauf, Roberto Parisella, Janno Siim
A reduction showing that the hardness of the discrete logarithm ($\mathsf{DL}$) assumption implies the hardness of the computational Diffie-Hellman ($\mathsf{CDH}$) assumption in groups of order $p$, where $p - 1$ is smooth, was first presented by den Boer [Crypto, 88].}
We also consider groups
of prime order $p$, where $p - 1$ is somewhat smooth (say, every prime $q$ that divides $p - 1$ is less than $2^{100}$).
Several practically relevant groups satisfy this condition.
1. We present a concretely efficient version of the reduction for such groups.
In particular, among practically relevant groups, we obtain the most efficient and tightest reduction in the literature for BLS12-381, showing that $\mathsf{DL}$ = $\mathsf{CDH}$.
2. By generalizing the reduction, we show that in these groups the $n$-Power $\mathsf{DL}$ ($n$-$\mathsf{PDL}$) assumption implies $n$-Diffie-Hellman Exponent ($n$-$\mathsf{DHE}$) assumption, where $n$ is polynomial in the security parameter.
On the negative side, we show there is no generic reduction, which could demonstrate that $n$-$\mathsf{PDL}$ implies the $n$-Generalized Diffie-Hellman Exponent ($n$-$\mathsf{GDHE}$) assumption.
This is in stark contrast with the algebraic group model, where this implication holds.
Delia-Iustina Grigoriță
As Internet of Things (IoT) systems become increasingly complex, verifying communication protocols is essential to guarantee their security and correctness. This paper introduces a brief introduction to the theoretical concepts of how to use formal techniques, LTL and rewriting logic within the Maude system to verify the security and proper behavior of the protocols. While rewriting logic explains how various events occur over time, LTL explains how a property can be formulated. This theoretical perspective is intended to inform future applications and research.
Seongkwang Kim, Byeonghak Lee, Mincheol Son
The VOLE-in-the-Head (VOLEitH) paradigm transforms VOLE-based zero-knowledge proofs into post-quantum signature schemes by allowing public verification. We introduce reduced VOLE-in-the-Head (rVOLEitH), which incorporates the Vector Semi-Commitment (VSC) technique. VSC, originally developed for MPC-in-the-Head (MPCitH) schemes, reduces commitment size while maintaining security by relaxing the binding property. We adapt the ideal cipher version of VSC (IC-VSC) into the VOLEitH framework, leading to a reduction in signature size. Our security analysis proves that rVOLEitH achieves existential unforgeability under chosen-message attacks (EUF-CMA) in the ideal cipher model. Compared to existing VOLEitH-based signatures, our approach reduces signature size by up to 6.0\% while improving computational efficiency.
Furthermore, we analyze the impact of eliminating individual seed commitments and demonstrate a practical attack against a recently proposed VOLEitH variant that lacks such commitments. Our results establish rVOLEitH as an optimized and secure alternative for post-quantum signatures, improving both efficiency and security in the VOLEitH paradigm.
Furthermore, we analyze the impact of eliminating individual seed commitments and demonstrate a practical attack against a recently proposed VOLEitH variant that lacks such commitments. Our results establish rVOLEitH as an optimized and secure alternative for post-quantum signatures, improving both efficiency and security in the VOLEitH paradigm.
Anatoliy Zinovyev
We study the problem of minimizing the total weight of (potentially many) participants of a distributed protocol, a necessary step when the original values are large but the scheme to be deployed scales poorly with the weights. We assume that $\alpha$ fraction of the original weights can be corrupted and we must output new weights with at most $\beta$ adversarial fraction, for $\alpha < \beta$. This problem can be viewed from the prism of electing a small committee that does the heavy work, a powerful tool for making distributed protocols scalable. We solve the variant that requires giving parties potentially multiple seats in the committee and counting each seat towards the cost of the solution. Moreover, we focus on the ``deterministic'' version of the problem where the computed committee must be secure for any subset of parties that can be corrupted by the adversary; such a committee can be smaller than a randomly sampled one in some cases and is useful when security against adaptive corruptions is desired but parties in the sub-protocol speak multiple times.
Presented are new algorithms for the problem as well as analysis of prior work. We give two variants of the algorithm Swiper (PODC 2024), one that significantly improves the running time without sacrificing the quality of the output and the other improving the output for a reasonable increase in the running time. We prove, however, that all known algorithms, including our two variants of Swiper, have worst case approximation ratio $\Omega(n)$. To counter that, we give the first polynomial time algorithm with approximation factor $n / \log^2 n$ and also the first sub-exponential time exact algorithm, practical for some real-world inputs. Of theoretical interest is another polytime algorithm that we present, based on linear programming, whose output is no worse than an optimal solution to the problem with slightly different parameters.
We implemented and tested previous and new algorithms, comparing them on the stake distributions of popular proof-of-stake blockchains, and found that our second variant of Swiper computes solutions extremely close to the optimal, confirmed by our exact algorithm.
Presented are new algorithms for the problem as well as analysis of prior work. We give two variants of the algorithm Swiper (PODC 2024), one that significantly improves the running time without sacrificing the quality of the output and the other improving the output for a reasonable increase in the running time. We prove, however, that all known algorithms, including our two variants of Swiper, have worst case approximation ratio $\Omega(n)$. To counter that, we give the first polynomial time algorithm with approximation factor $n / \log^2 n$ and also the first sub-exponential time exact algorithm, practical for some real-world inputs. Of theoretical interest is another polytime algorithm that we present, based on linear programming, whose output is no worse than an optimal solution to the problem with slightly different parameters.
We implemented and tested previous and new algorithms, comparing them on the stake distributions of popular proof-of-stake blockchains, and found that our second variant of Swiper computes solutions extremely close to the optimal, confirmed by our exact algorithm.
Mario Larangeira
The stake delegation technique is what turns the general Proof of Stake (PoS) into a practical protocol for a large number of participants, ensuring the security of the distributed system, in what is known as Delegated PoS (DPoS). Karakostas et al. (SCN ’20) formalized the delegation method paving the way for a whole industry of stake pools by proposing a formal definition for wallet as a universal composable (UC) functionality and introducing a corresponding protocol. On the other hand, a widely used technique named hot/cold wallet was formally studied by Das et al. (CCS ’19 and ’21), and Groth and Shoup (Eurocrypt ’22) for different key derivation methods in the Proof of Work (PoW) setting, but not PoS. Briefly, while hot wallets are exposed to the risks of the network, the cold wallet is kept offline, thus more secure. However this may impair some capabilities given that the cold wallet is kept indefinitely offline. It is straightforward to observe that this “double wallet” design is not naturally portable to the setting where delegation is paramount, i.e., DPoS. This work identifies challenges for PoS Hot/Cold Wallet and proposes a secure and practical protocol.
09 June 2025
Taipei, Taiwan, 17 October 2025
Event date: 17 October 2025
Submission deadline: 24 June 2025
Notification: 8 August 2025
Submission deadline: 24 June 2025
Notification: 8 August 2025
Toulouse, France, 25 September 2025
Event date: 25 September 2025
Submission deadline: 17 June 2025
Submission deadline: 17 June 2025
Bhubaneswar Municipal Corporation, India, 14 December - 17 December 2025
Event date: 14 December to 17 December 2025
Submission deadline: 1 September 2025
Notification: 10 October 2025
Submission deadline: 1 September 2025
Notification: 10 October 2025
University of Idaho
I am currently looking for two motivated PhD students to join my research group. My lab will focus on trustworthy IC design, secure EDA, hardware Trojans, reverse engineering, circuit obfuscation, cryptographic accelerators, PUFs, TRNGs, and the use of LLMs, MPC, and ZKPs in hardware security. Ideal candidates should have a background in Electrical or Computer Engineering, Computer Science, or a related field, with experience or a strong interest in VLSI design, EDA tools, and hardware security concepts. Programming skills in Verilog, SystemVerilog, C++, and Python are highly valued.
These fully funded positions offer access to advanced EDA tools, collaborative industry opportunities, and support for publishing at top-tier venues. To apply, please send your CV and academic transcripts to xaainulabideen@gmail.com. Feel free to reach out with any questions or to share this opportunity!
Closing date for applications:
Contact: Zain Ul Abideen
More information: https://users.ece.cmu.edu/~zabideen/
Aarushi Goel, Mingyuan Wang, Zhiheng Wang
We present the first construction of multiparty distributed point functions based on one-way functions, where the share sizes remain sublinear in the domain size and grow {\em only polynomially} with the number of parties. In contrast, existing multiparty distributed point function constructions in Minicrypt have share sizes that grow {\em exponentially} with the number of parties.
Sajjad Alizadeh, Reza Hooshmand
The Internet of Things (IoT) is composed of interconnected devices that exchange data over a network,
enabling applications in healthcare, transportation, and smart environments. As IoT ecosystems expand,
ensuring security and privacy remains a critical challenge. Many IoT devices rely on wireless
networks for data transmission, making them vulnerable to eavesdropping, tracking, and tampering.
This highlights the need for robust authentication mechanisms. To address these concerns, numerous
authentication protocols have been proposed. However, many fail to ensure adequate security against
both passive and active attacks. In this research, we introduce LAPWN, a lightweight protocol for
user–server communication, specifically designed for constrained environments, ensuring a balance
between security and efficiency. The proposed protocol is implemented as a fully functional Python
application, demonstrating its practical usability and evaluating its efficiency in real-world scenarios.
To validate its security, we performboth informal and formal analyses, utilizing Scyther, ProVerif, and
the Real-or-Random (RoR) model. The results confirm that LAPWN provides a secure, lightweight,
and efficient authentication solution with low computational and communication overhead. Furthermore,
performance evaluations show that it surpasses existing authentication protocols, making it a
highly effective solution for secure user–server interactions in constrained environments.
Mark Zhandry
We make the case for modeling unitary oracles by allowing for controlled access to the oracle as well as its conjugate transpose (inverse), but also its conjugate and transpose. Controlling and conjugate transposes are common if even standard, but conjugates and transposes appear to be non-standard. In order to justify our modeling, we give several formal examples of what goes wrong or is missed when using a more restrictive modeling. We also argue that our model is the "right" level of granularity, and that other transformations likely do not correspond to efficient computation. We also discuss other modeling choices, such as ancillas and approximation error.
Through our exploration, we uncover interesting phenomena. Examples include an attack on the recent pseudorandom unitary construction of Ma and Huang (STOC'25) if used incorrectly as a publicly evaluatable unitary, and a quantum complexity-theoretic separation that follows from a purely classical separation.
Through our exploration, we uncover interesting phenomena. Examples include an attack on the recent pseudorandom unitary construction of Ma and Huang (STOC'25) if used incorrectly as a publicly evaluatable unitary, and a quantum complexity-theoretic separation that follows from a purely classical separation.
Aarushi Goel, Peihan Miao, Phuoc Van Long Pham, Satvinder Singh
Private Set Intersection (PSI) enables two parties to compute the intersection of their private sets without revealing any additional information. While maliciously secure PSI protocols prevent many attacks, adversaries can still exploit them by using inconsistent inputs across multiple sessions. This limitation stems from the definition of malicious security in secure multiparty computation, but is particularly problematic in PSI because: (1) real-world applications---such as Apple’s PSI protocol for CSAM detection and private contact discovery in messaging apps---often require multiple PSI executions over consistent inputs, and (2) the PSI functionality makes it relatively easy for adversaries to infer additional information.
We propose {\em Private Intersection over Committed Sets (PICS)}, a new framework that enforces input consistency across multiple sessions via committed sets. Building on the state-of-the-art maliciously secure PSI framework (i.e., VOLE-PSI [EUROCRYPT 2021]), we present an efficient instantiation of PICS % in the random oracle model using lightweight cryptographic tools. We implement our protocol to demonstrate concrete efficiency. Compared to VOLE-PSI, for input sets of size $2^{24}$, our communication overhead is as low as $1.1\%$. Our end-to-end performance overhead is $130\%$ in the LAN setting and decreases to $80\%-10\%$ in the WAN setting with bandwidths ranging from $200$ to $5$ Mbps.
We propose {\em Private Intersection over Committed Sets (PICS)}, a new framework that enforces input consistency across multiple sessions via committed sets. Building on the state-of-the-art maliciously secure PSI framework (i.e., VOLE-PSI [EUROCRYPT 2021]), we present an efficient instantiation of PICS % in the random oracle model using lightweight cryptographic tools. We implement our protocol to demonstrate concrete efficiency. Compared to VOLE-PSI, for input sets of size $2^{24}$, our communication overhead is as low as $1.1\%$. Our end-to-end performance overhead is $130\%$ in the LAN setting and decreases to $80\%-10\%$ in the WAN setting with bandwidths ranging from $200$ to $5$ Mbps.