International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 30 September 2022

Simone Dutto, Davide Margaria, Carlo Sanna, Andrea Vesco
ePrint Report ePrint Report
The advent of quantum computers brought a large interest in post-quantum cryptography and in the migration to quantum-resistant systems. Protocols for Self-Sovereign Identity (SSI) are among the fundamental scenarios touched by this need. The core concept of SSI is to move the control of digital identity from third-party identity providers directly to individuals. This is achieved through Verificable Credentials (VCs) supporting anonymity and selective disclosure. In turn, the implementation of VCs requires cryptographic signature schemes compatible with a proper Zero-Knowledge Proof (ZKP) framework. We describe the two main ZKP VCs schemes based on classical cryptographic assumptions, that is, the signature scheme with efficient protocols of Camenisch and Lysyanskaya, which is based on the strong RSA assumption, and the BBS+ scheme of Boneh, Boyen and Shacham, which is based on the strong Diffie-Hellman assumption. Since these schemes are not quantum-resistant, we select as one of the possible post-quantum alternatives a lattice-based scheme proposed by Jeudy, Roux-Langlois, and Sander, and we try to identify the open problems for achieving VCs suitable for selective disclosure, non-interactive renewal mechanisms, and efficient revocation.
Expand

Additional news items may be found on the IACR news page.