International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 24 October 2022

Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, Nicholas Spooner
ePrint Report ePrint Report
Building on recent disjunctive compilers for zero-knowledge (e.g. Goel et al. [EUROCRYPT'22]) we propose a new compiler that, when applied to sublinear-sized proofs, can result in sublinear-size disjunctive zero-knowledge with sublinear proving times (without meaningfully increasing proof sizes). Our key observation is that simulation in sublinear-size zero-knowledge proof systems can be much faster (both concretely and asymptotically) than the honest prover. We study applying our compiler to two classes of $O(\log n)$-round protocols: interactive oracle proofs, specifically Aurora [EUROCRYPT'19] and Fractal [EUROCRYPT'20], and folding arguments, specifically Compressed $\Sigma$-protocols [CRYPTO'20, CRYPTO'21] and Bulletproofs [S&P'18]. This study validates that the compiler can lead to significant savings. For example, applying our compiler to Fractal enables us to prove a disjunction of $\ell$ clauses, each of size $N$, with only $O((N+\ell) \cdot \text{polylog}(N))$ computation, versus $O(\ell N \cdot \text{polylog}(N))$ when proving the disjunction directly. We also find that our compiler offers a new lens through which to understand zero-knowledge proofs, evidenced by multiple examples of protocols with the same "standalone" complexity that each behave very differently when stacked.
Expand

Additional news items may be found on the IACR news page.