International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 25 December 2022

Dario Fiore, Lydia Garms, Dimitris Kolonelos, Claudio Soriente, Ida Tucker
ePrint Report ePrint Report
Anonymous authentication primitives, e.g., group or ring signatures, allow one to realize privacy-preserving data collection applications, as they strike a balance between authenticity of data being collected and privacy of data providers. At PKC 2021, Diaz and Lehmann defined group signatures with User-Controlled Linkability (UCL) and provided an instantiation based on BBS+ signatures. In a nutshell, a signer of a UCL group signature scheme can link any of her signatures: linking evidence can be produced at signature time, or after signatures have been output, by providing an explicit linking proof. In this paper, we introduce Ring Signatures with User-Controlled Linkability (RS-UCL). Compared to group signatures with user-controlled linkability, RS-UCL require no group manager and can be instantiated in a completely decentralized manner. We also introduce a variation, User Controlled and Autonomous Linkability (RS-UCAL), which gives the user full control of the linkability of their signatures. We provide a formal model for both RS-UCL and RS-UCAL and introduce a compiler that can upgrade any ring signature scheme to RS-UCAL. The compiler leverages a new primitive we call Anonymous Key Randomizable Signatures (AKRS) — a signature scheme where the verification key can be randomized — that can be of independent interest. We also provide different instantiations of AKRS based on Schnorr signatures and on lattices. Finally, we show that an AKRS scheme can additionally be used to construct an RS-UCL scheme.
Expand

Additional news items may be found on the IACR news page.