Workshop on Cryptographic Hardware and Embedded Systems (CHES 2020)

Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers

Yusuke Naito^{*} and <u>Takeshi Sugawara</u>^{**}

*Mitsubishi Electric Corporation **The University of Electro-Communications

Our New Design: PFB (Plaintext Feedback) Mode

• Key features

- 64-bit security with a 64-bit tweakable block cipher (the beyond-the-birthday-bound security)
- Low memory usage with threshold implementation (TI)
 - By replacing a non-linearly updated 64-bit state into a public tweak

Lightweight Cryptography

Security for resource-constrained IoT devices

- Lightweight block ciphers
 - Standardization
 - 64-bit primitives are popular

- Memory (register) is a bottleneck in hardware implementation
 - 4-bit S-box: 20--40 gates
 - 128-bit register: 600--900 gates

Lightweight Authenticated Encryption (AE)

- NIST is running a competition (LWC) for choosing a lightweight AE
- Optimizing the mode of operation for lightweight implementation
 - Only 32-bit security when combined with a mode of operation with the birthdaybound security, which is subject to a practical attack**

*Y. Naito, M. Matsui, T. Sugawara, and D. Suzuki, "SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation," CHES 2018.

** K. Bhargavan, G. Leurent "On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN", CCS2016.

Lightweight + SCA Resistance

• Resource-constrained devices are used in a hostile environment in which side-channel attack (SCA) is a serious threat

• SCA protection in resource-constrained devices is even more challenging

• Lightweight cryptography that enable efficient SCA countermeasure is a new frontier of research, e.g., TI-friendly S-box and SCREAM

(1st order) Threshold Implementation

- Encode a sensitive value as a share, and implement crypto while preserving the shared representation
- Efficiency provides security in the presence of glitches
- Multiplies the memory cost!

Input share (x_a, x_b, x_c) satisfying $x_a \oplus x_b \oplus x_c = x$

Output share (X_a, X_b, X_c) satisfying $X_a \oplus X_b \oplus X_c = X$

Reduce the Size of Non-Linearly Updated State

- Low memory usage with threshold implementation (TI)
- Challenge: birthday-bound security
 - We use a tweakable block cipher (TBC) to efficiently achieve the beyond-thebirthday-bound security, i.e., 64-bit security with a 64-bit primitive

New Mode of Operation PFB (Plaintext Feedback)

- A nonce-based authenticated encryption with associated data using TBC
 - Provides the beyond-the-birthday-bound security: security level = block length
- Based on iCOFB (Chakraborti et al. CHES2017) with several improvements:
 - Adding associate-data processing
 - Supporting arbitrary-length message
 - Giving a new proof for a tighter security bound
- Hardware performance evaluation with TI

Tweakable block cipher

- An extension of a block cipher with the third input called tweak
- We get an independent random permutation for each tweak, i.e., efficient rekeying

Tweakable block cipher SKINNY

- A popular lightweight TBC
- Tweakey framework: no discrimination between the key and tweak

Proposed Method **PFB** $\begin{array}{c}
\underline{Hash}\\
 & \underbrace{0^{b}}\\
 & \downarrow \end{array}
\end{array}$ Associated Data A

PFB cont.

- Memory for running a TDC is sufficient for the entire PFB operation.
- Tweak contains public parameters: a constant, nonce, and counter

Proposed Method

Security of PFB

- Target: b-bit security with the b-bit block length
- Assumption
 - TBC as a TRP (Tweakable Random Permutation)
 - Nonce respect setting (i.e., no nonce misuse)
- Privacy
 - Game: distinguishing a ciphertext from a random sequence
 - PFB achieves perfect security
- Authenticity
 - Game: forging a valid tag with the query access to the decryption oracle
 - A successful attack needs 2^b decryption queries, i.e., PFB achieves b-bit security

Proof sketch for privacy

- 1. No repeated tweak in encryption
 - : the (non-repeated) nonce and a counter
- 2. TBC's output $Y_1, Y_2, ..., T$ are random and independent by the TRP assumption
- 3. We cannot distinguish the ciphertexts and tag from a random string, i.e., achieves perfect security

Proof sketch for authenticity

• We consider two attack cases

- Attack case #1: guessing the tag in PFB's decryption
 - The success probability is roughly 1/2^b for each query because the tag is almost randomly chosen
 - The probability $Pr[#1] \leq O(q_D/2^b)$ with q_D queries to the Decryption oracle

Proof sketch for authenticity cont.

- Attack case #2: exploiting the collision in the PFB states
 - A collision in between the Enc and Dec states with the same nonce results in a collision of the tag, i.e., successful tag forgery

15

• The probability to observe a collision is $1/2^{b}$, so $Pr[#2] \leq O(q_{D}/2^{b})$ with q_{D} Decryption queries

Hardware architecture

- PFB with SKINNY-64-192 (a variant with 64-bit block and 192-bit tweakey)
- A serial SKINNY architecture with 4-bit datapath
- The mode of operation is a thin wrapper: with the MUX, XOR, AND gates
- Heterogeneous number of shares
 - Green: 1-share (public)
 - Red: 2-share (linear secret)
 - Others: 3-share (nonlinear secret)

Comparing memory sizes

- We traded a 64-bit non-linear state with a 64-bit public tweak
- The proposed method saves 128 bits with TI

Hardware performance comparison w/ 3-share TI

- Smaller circuit area compared with the state-of-the-art: SAEB with GIFT-128
- Advantage over sponge-based schemes
 - Key/tweak use the smaller number of shares

Ref.	Scheme	Circuit Area /GE	Proposed method
This work	PFB/Skinny-64	5,858	A 128-bit block cipher-based
This work	SAEB/GIFT-128	6,229	scheme implemented with the
Groß et al.*	Ascon w/o IF	7,970	same design policy
Groß et al.*	Ascon w IF	9,190	Previous AE implementations with TI
Arribas et al.**	Ketje-JR	18,335	

[1] Groß et al., "Suit up! - Made-to-Measure Hardware Implementations of ASCON," DSD 2015.
 [2] Arribas et al., "Guards in Action: First- Order SCA Secure Implementations of Ketje Without Additional Randomness," DSD 2018.

Further improvement for 128-bit security*

- Further reducing the non-linearly updated state
- PFB_Plus that satisfy 2b-bit security for the b-bit blockcipher
 - 128-bit security with a 64-bit TBC; even more efficient with TI

*Y. Naito, Y. Sasaki, and T. Sugawara, "Lightweight Authenticated Encryption Mode Suitable for Threshold Implementation," EUROCRYPT 2020

Conclusion

- PFB: plaintext feedback mode
 - Provides the beyond-the-birthday bound security, i.e., 64-bit security with a 64-bit primitive
 - Low memory usage with threshold implementation (TI)
 - Achieves the smallest circuit area in hardware implementation

- TI-friendly mode of operation
 - Further improvement: PFB_Plus
- The heterogeneity between state/key/tweak (cf. homogeneity in permutation-based schemes) leads to a better performance with TI

Thank you for watching!

Questions?

