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Who am I

I PhD student, studying Deep Learning (DL) for Side-Channel Analysis
(SCA)

Conceives a 
component

Evaluates 
Security Claims 

Delivers a Security 
Certification

Commercialises the 
certified product

Developer ITSEF ANSSI Developer

Loïc

Cécile

French Certification Scheme

Emmanuel
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A Comprehensive Study of Deep Learning for Side-Channel
Analysis

What is SCA?

  

                                              Encryption Sensitive operation

               LOAD X ;       LOAD B ;          MV B ;             …                            

Plaintext P Secret K

Measure trace X

Z = C(P, K)

Profiling Attack

Attack using open samples similar to the target device – same code, same chip,
etc. – with full knowledge of the secret key
Two steps:
I Profiling phase: P,K known =⇒ Z known, X acquired on an open

sample
I Attack phase: P known, X acquired on the target device, K guessed
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Profiling Attacks

Key Recovery (i.e. attack step)

Given Na attack traces xi with plaintext pi , calculate scores yi = F (xi )

0 1 . . . K

y0

0 1 . . . Zi = C(pi , k
?)

y1

y2

k̂

Goal: find F that minimizes Na s.t. k̂ = k? with probability ≥ β (e.g. 0.9)
Optimal model: F ?, with N?a traces

How to find F ? =⇒ profiling step

Requires to know the probability distribution F ? = Pr[Z |X]

Reality: unknown for the evaluator/attacker. Estimation with parametric
models F (., θ):

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%

Z=0 Z=1
x
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 6/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Profiling Attacks

Key Recovery (i.e. attack step)

Given Na attack traces xi with plaintext pi , calculate scores yi = F (xi )

0 1 . . . K

y0

0 1 . . . Zi = C(pi , k
?)

y1

y2

k̂

Goal: find F that minimizes Na s.t. k̂ = k? with probability ≥ β (e.g. 0.9)
Optimal model: F ?, with N?a traces

How to find F ? =⇒ profiling step

Requires to know the probability distribution F ? = Pr[Z |X]

Reality: unknown for the evaluator/attacker. Estimation with parametric
models F (., θ):

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%

Z=0 Z=1
x
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Deep Learning (DL) based SCA is a hot topic currently

Recent milestones about its effectiveness: more robust against
counter-measures like masking [MPP16], jitter (misalignment) [CDP17],
whether on software or FPGA [Kim+19]

Training a Neural Network

F (x, θ)

Parameters θ

z = C(p, k?)

L(y, z)

L: performance metric (accuracy, recall, ...) or loss function (Mean Square
Error, Negative Log Likelihood (NLL), ...)
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A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Open issue with Machine Learning based SCA1

“How to evaluate the quality of a model during training?”

I Accuracy: probability to recover the secret key with one trace

Their observations

”Accuracy does not seem to be the right performance metric in SCA”
I High accuracy =⇒ successful key recovery
I Low accuracy =⇒ nothing, problem: often happens (e.g. highly noisy

leakages)
I Apparently, no other machine learning metric related to SCA metrics

Accuracy: find β s.t. N?a = 1 6= SCA: fix β and find N?a instead

Our claim: we can accurately estimate N?a with DL !

1Picek et al., Ches 2019 [Pic+18]
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 8/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Open issue with Machine Learning based SCA1

“How to evaluate the quality of a model during training?”
I Accuracy: probability to recover the secret key with one trace

Their observations

”Accuracy does not seem to be the right performance metric in SCA”
I High accuracy =⇒ successful key recovery
I Low accuracy =⇒ nothing, problem: often happens (e.g. highly noisy

leakages)
I Apparently, no other machine learning metric related to SCA metrics

Accuracy: find β s.t. N?a = 1 6= SCA: fix β and find N?a instead

Our claim: we can accurately estimate N?a with DL !

1Picek et al., Ches 2019 [Pic+18]
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Bridging the gap between the loss function and the SCA metric

Training: minimization of the NLL a.k.a. Cross Entropy

L(θ) =
1

Np

Np∑
i=1

− log2 F (xi , θ)[zi ]

= H(Z)− P̂INp (Z ;X; θ)

hello

H(Z)

H(Z |X)

MI (Z ;X) ≥ f (β)
N?a

Cherisey et al. CHES 19

f (β) = n− (1−β) log2(2n − 1) +

β log2(β) + (1 − β) log2(1 − β)

PI (Z ;X; θ) ≤ MI (Z ;X)
Bronchain et al. CRYPTO 19

This talk → E
X,Z

[L(θ)]
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Main Result
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Let θ̂Np = argminθ L(θ) = argmaxθ P̂INp (Z ;X; θ). Then:

PI
(
Z ;X; θ̂Np

)
P−→

Np→∞
sup
θ

PI (Z ;X; θ) ≤ MI (Z ;X)

Steps

L(θ)

H(Z)

H(Z |X)

MI (Z ;X)

PI
(
Z ;X; θ̂1,000

)
PI
(
Z ;X; θ̂2,000

)
PI
(
Z ;X; θ̂5,000

)
PI
(
Z ;X; θ̂∞

)
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 11/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Main Result

Proposition

Let θ̂Np = argminθ L(θ) = argmaxθ P̂INp (Z ;X; θ).

Then:

PI
(
Z ;X; θ̂Np

)
P−→

Np→∞
sup
θ

PI (Z ;X; θ) ≤ MI (Z ;X)

Steps

L(θ)

H(Z)

H(Z |X)

MI (Z ;X)

PI
(
Z ;X; θ̂1,000

)
PI
(
Z ;X; θ̂2,000

)
PI
(
Z ;X; θ̂5,000

)

PI
(
Z ;X; θ̂∞

)

17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 11/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Main Result

Proposition

Let θ̂Np = argminθ L(θ) = argmaxθ P̂INp (Z ;X; θ). Then:

PI
(
Z ;X; θ̂Np

)
P−→

Np→∞
sup
θ

PI (Z ;X; θ) ≤ MI (Z ;X)

Steps

L(θ)

H(Z)

H(Z |X)

MI (Z ;X)

PI
(
Z ;X; θ̂1,000

)
PI
(
Z ;X; θ̂2,000

)
PI
(
Z ;X; θ̂5,000

)

PI
(
Z ;X; θ̂∞

)
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Tightness of the Lower Bound
To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

I Approximation error: supθ∈Θ PI (Z ;X; θ)−MI (Z ;X) ≤ 0

I Estimation error: Np <∞ =⇒ supθ∈Θ PI (Z ;X; θ) → P̂INp

(
Z ;X; θ̂Np

)
I Optimization error: θ̂Np unknown, θSGD instead, by Stochastic Gradient

Descent (SGD)

=⇒ Ideally each error must be discussed through simulations and experiments

Steps

L(θ)

H(Z)

H(Z |X)

MI (Z ;X)PI
(
Z ;X; θ̂

)
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Settings of the simulations

Leakage model

I Hamming weight with additive gaussian noise (σ ∈ [0.01; 3.2])
I Draw an Exhaustive dataset: estimation error negligible

PI/MI computation

I Computation of MI (X;Z) with Monte-Carlo simulations
I Training of a one layer MLP with 1, 000 neurons to maximize

PI (Z ;X; θ) = n − L(θ), where n = 4 bits

Several case studies

I Higher-order masking: sensitive variable split into d independent parts
I Shuffling: independent operations (e.g. 16 SBoxes in SubBytes) randomly

shuffled
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Simulation results
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Figure: Shuffling, w.r.t. level of noise

What to interpret

I No matter the masking order, PI (Z ;X; θSGD) ≈ MI (Z ;X)
I For a simple MLP, the approximation error and the optimization error are

negligible
I Any more complex model should have a negligible approximation error too
I Empirical verifications: see appendix
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Application on Public Datasets

I Na(θ): number of traces obtained with key recovery.

I So far: N?a ≥ f (β)
MI(Z ;X)

and PI (Z ;X; θSGD) ≈ MI (Z ;X)

I Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

I Relative error ε computed at final epoch
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 17/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Application on Public Datasets

I Na(θ) f (β)
PI(Z ;X;θ)

≈ f (β)
n−L(θ)

: number of traces obtained with key recovery?

I So far: N?a ≥ f (β)
MI(Z ;X)

and PI (Z ;X; θSGD) ≈ MI (Z ;X)

I Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

I Relative error ε computed at final epoch

Micro-controller protected
with misalignment

0 50 100 150 200

Epoch

100

101

102

N
? a

f(β)
PI

Key recovery

Figure: AES-RD: ε = 0.16

Micro-controller protected
with masking

0 5 10 15 20 25 30

Epoch

102

103

N
? a

f(β)
PI

Key recovery

Figure: ASCAD: ε = 0.16

Implementation on FPGA
(no counter-measure)

0 10 20 30 40 50

Epoch

102

103

N
? a

f(β)
PI

Key recovery

Figure: AES-HD: ε = 0.18
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Application on Public Datasets

I Na(θ) f (β)
PI(Z ;X;θ)

≈ f (β)
n−L(θ)

: number of traces obtained with key recovery?

I So far: N?a ≥ f (β)
MI(Z ;X)

and PI (Z ;X; θSGD) ≈ MI (Z ;X)

I Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

I Relative error ε computed at final epoch
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Conclusion

Takeaway messages

1. Minimizing the NLL loss ≡ maximizing the Perceived Information (PI)
=⇒ tight lower bound of the Mutual Information (MI) =⇒ accurate
estimation of N?a

2. NLL as a loss function is sound from an evaluator point of view
3. Enables to quantitatively measure the impact of counter-measures

Thank You! Questions?

Looking for a postdoc candidate in
machine-learning-based SCA? Hire
me!
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 18/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Conclusion

Takeaway messages

1. Minimizing the NLL loss ≡ maximizing the PI =⇒ tight lower bound of
the MI =⇒ accurate estimation of N?a

2. NLL as a loss function is sound from an evaluator point of view

3. Enables to quantitatively measure the impact of counter-measures

Thank You! Questions?

Looking for a postdoc candidate in
machine-learning-based SCA? Hire
me!

17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 18/18



A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Conclusion

Takeaway messages

1. Minimizing the NLL loss ≡ maximizing the PI =⇒ tight lower bound of
the MI =⇒ accurate estimation of N?a

2. NLL as a loss function is sound from an evaluator point of view
3. Enables to quantitatively measure the impact of counter-measures

Thank You! Questions?

Looking for a postdoc candidate in
machine-learning-based SCA? Hire
me!
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17/09/2020, Ches| Löıc Masure, Cécile Dumas, Emmanuel Prouff | 21/18

https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1007/978-3-642-34961-4\_44
https://doi.org/10.1007/978-3-642-34961-4\_44


A Comprehensive Study of Deep Learning for Side-Channel
Analysis

Our home dataset

Figure: ChipWhisperer-Lite board
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Figure: SNR at orders d = 1, 2

Algorithm 1 loadData

1: LD r0, X . Loads the first byte in r0
2: CLR r0 . Clears the register
3: ST X, r0 . Stores 0 in the plaintext array
4: LD r0, X . Do it again to clear the bus
5: CLR r0
6: ST X, r0
7: LD r0, X . One more time to be sure
8: CLR r0
9: ST X+, r0

Loads sequentially an array of 16 bytes
into one register and clears it =⇒ no
joint leakage at order d ≥ 2.
500, 000 traces acquired.
We only work on n = 4 bits,
|Z| = 2n = 16.
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Experiment on ChipWhisperer-Lite: masking

I Emulation of order d leakages:
Z =

⊕
i∈[[0,d ]] plain[i ] for

d ∈ {0, 1, 2}
I Extraction of PoIs according to

SNR.
I Learning curve: PI (Z ;X; θSGD)

and P̂INp (Z ;X; θSGD) w.r.t. Np

=⇒ measures the estimation
error.
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P̂INp
(Z; X; θSGD), One share

Two shares

Three shares

What to interpret

I ≈ one decade lost for each new masking order =⇒ masking remains
sound

I Masking has an effect on the estimation error
I For d = 3,Np < 100, 000, no information !
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Experiment 5: shuffling

I Emulation of order c shuffling:
Z = plain[i ] where i is randomly
drawn from a subset of c indices

I Complete trace: D = 250
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Figure: Exp. 5, shuffling

What to interpret

I Linear decrease of PI, as expected [Vey+12]
I Clearly over-fitting: the estimation error non-negligible
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