

A Comprehensive Study of Deep Learning for Side-Channel Analysis

Loïc Masure^{1,3} Cécile Dumas¹ Emmanuel Prouff^{2, 3}

¹Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble loic.masure@cea.fr

²ANSSI, France

³Sorbonne Université, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005, Paris, France

17/09/2020, CHES

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 1/18

Ceatech

leti

Outline

- 1. Context
- 2. SCA Optimization Problem versus Deep Learning Based SCA
- 3. NLL Minimization is PI Maximization
- 4. Simulation results
- 5. Experimental results

Who am I

 PhD student, studying Deep Learning (DL) for Side-Channel Analysis (SCA)

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 3/18

What is SCA?

What is SCA?

What is SCA?

Profiling Attack

Attack using *open samples* similar to the target device – same code, same chip, *etc.* – with full knowledge of the secret key

Two steps:

- ▶ Profiling phase: P, K known $\implies Z$ known, **X** acquired on an open sample
- Attack phase: P known, X acquired on the target device, K guessed

Ceatech

leti

Outline

1. Context

2. SCA Optimization Problem versus Deep Learning Based SCA

- 3. NLL Minimization is PI Maximization
- 4. Simulation results
- 5. Experimental results

leti

Ceatech

How to find $F^* \implies$ profiling step

Requires to know the probability distribution $F^{\star} = \Pr[Z|\mathbf{X}]$

Ceatech

How to find $F^* \implies$ profiling step

Requires to know the probability distribution $F^* = \Pr[Z|\mathbf{X}]$ Reality: unknown for the evaluator/attacker. Estimation with parametric models $F(., \theta)$:

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 6/18

Deep Learning (DL) based SCA is a hot topic currently

Recent milestones about its effectiveness: more robust against counter-measures like masking [MPP16], jitter (misalignment) [CDP17], whether on software or FPGA [Kim+19]

 \mathcal{L} : performance metric (accuracy, recall, ...) or loss function (Mean Square Error, NLL, ...)

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 7/18

"How to evaluate the quality of a model during training?"

¹Picek et al., CHES 2019 [Pic+18]

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 8/18

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA"

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA" ► High accuracy ⇒ successful key recovery

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA"

- ► High accuracy ⇒ successful key recovery
- Low accuracy nothing

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA"

- ► High accuracy ⇒ successful key recovery
- Low accuracy

 nothing, problem: often happens (e.g. highly noisy leakages)

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA"

- High accuracy \implies successful key recovery
- Low accuracy

 nothing, problem: often happens (e.g. highly noisy leakages)
- Apparently, no other machine learning metric related to SCA metrics

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

"Accuracy does not seem to be the right performance metric in SCA"

- \blacktriangleright High accuracy \implies successful key recovery
- Low accuracy \implies nothing, problem: often happens (*e.g.* highly noisy leakages)
- Apparently, no other machine learning metric related to SCA metrics

Accuracy: find β s.t. $N_{2}^{\star} = 1$

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

Ceatech

"Accuracy does not seem to be the right performance metric in SCA"

- ► High accuracy ⇒ successful key recovery
- Low accuracy

 nothing, problem: often happens (e.g. highly noisy leakages)
- Apparently, no other machine learning metric related to SCA metrics

Accuracy: find β s.t. $N_a^{\star} = 1 \qquad \neq$ SCA: fix β and find N_a^{\star} instead

¹Picek et al., CHES 2019 [Pic+18]

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 8/18

"How to evaluate the quality of a model during training?"

Accuracy: probability to recover the secret key with one trace

Their observations

Ceatech

"Accuracy does not seem to be the right performance metric in SCA"

- ► High accuracy ⇒ successful key recovery
- Low accuracy

 nothing, problem: often happens (e.g. highly noisy leakages)
- Apparently, no other machine learning metric related to SCA metrics

Accuracy: find β s.t. $N_a^{\star} = 1 \qquad \neq$ SCA: fix β and find N_a^{\star} instead

Our claim: we can accurately estimate N_a^* with DL !

Ceatech

leti

Outline

- 1. Context
- 2. SCA Optimization Problem versus Deep Learning Based SCA

3. NLL Minimization is PI Maximization

- 4. Simulation results
- 5. Experimental results

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 10/18

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 10/18

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 10/18

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 10/18

Bridging the gap between the loss function and the SCA metric

Bridging the gap between the loss function and the SCA metric

Training: minimization of the NLL a.k.a. Cross Entropy

$$\mathcal{L}(\theta) = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} -\log_{2} F(\mathbf{x}_{i}, \theta)[z_{i}] = H(Z) - \widehat{PI}_{N_{p}}(Z; \mathbf{X}; \theta)$$

$$H(Z)$$

$$H(Z)$$

$$H(Z)$$

$$H(Z)$$

$$H(Z; \mathbf{X}) \geq \frac{f(\beta)}{N_{\sigma}^{2}}$$

$$H(Z; \mathbf{X}; \theta) \leq MI(Z; \mathbf{X})$$
Bronchain *et al.* CRYPTO 19
$$H(Z|\mathbf{X})$$

$$H(Z|\mathbf{X})$$

$$H(Z|\mathbf{X})$$

 $H(Z|\mathbf{X})$

Steps
 17/09/2020, CHES | Loic Masure, Cécile Dumas, Emmanuel Prouff | 11/18

Main Result

Ceatech

Proposition

Let
$$\hat{\theta}_{N_p} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta) = \operatorname{argmax}_{\theta} \widehat{\mathsf{Pl}_{N_p}}(Z; \mathbf{X}; \theta).$$

Main Result

Ceatech

Proposition

Let
$$\hat{\theta}_{N_p} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta) = \operatorname{argmax}_{\theta} \widehat{\mathsf{Pl}_{N_p}}(Z; \mathbf{X}; \theta).$$

Main Result

Ceatech

Proposition

Let
$$\hat{\theta}_{N_p} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta) = \operatorname{argmax}_{\theta} \widehat{\mathsf{Pl}_{N_p}}(Z; \mathbf{X}; \theta).$$

Main Result

Ceatech

Proposition

Let
$$\hat{\theta}_{N_p} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta) = \operatorname{argmax}_{\theta} \widehat{\mathsf{Pl}_{N_p}}(Z; \mathbf{X}; \theta).$$

Main Result

Ceatech

Proposition

Let
$$\hat{\theta}_{N_{p}} = \operatorname{argmin}_{\theta} \mathcal{L}(\theta) = \operatorname{argmax}_{\theta} \widehat{\operatorname{Pl}_{N_{p}}}(Z; \mathbf{X}; \theta).$$
 Then:
 $\operatorname{Pl}\left(Z; \mathbf{X}; \hat{\theta}_{N_{p}}\right) \xrightarrow[N_{p} \to \infty]{\mathcal{P}} \sup_{\theta} \operatorname{Pl}\left(Z; \mathbf{X}; \theta\right) \leq \operatorname{Ml}\left(Z; \mathbf{X}\right)$

Tightness of the Lower Bound

To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

Tightness of the Lower Bound

To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

• Approximation error:
$$\sup_{\theta \in \Theta} PI(Z; \mathbf{X}; \theta) - MI(Z; \mathbf{X}) \leq 0$$

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 12/18

l et t

Tightness of the Lower Bound

Ceatech

To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

- Approximation error: $\sup_{\theta \in \Theta} PI(Z; \mathbf{X}; \theta) MI(Z; \mathbf{X}) \leq 0$
- ► Estimation error: $N_{p} < \infty \implies \sup_{\theta \in \Theta} \mathsf{Pl}(Z; \mathbf{X}; \theta) \rightarrow \widehat{\mathsf{Pl}}_{N_{p}}(Z; \mathbf{X}; \hat{\theta}_{N_{p}})$

ET 1

Tightness of the Lower Bound

Ceatech

To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

- Approximation error: $\sup_{\theta \in \Theta} PI(Z; \mathbf{X}; \theta) MI(Z; \mathbf{X}) \leq 0$
- ► Estimation error: $N_{p} < \infty \implies \sup_{\theta \in \Theta} \mathsf{Pl}(Z; \mathbf{X}; \theta) \rightarrow \widehat{\mathsf{Pl}}_{N_{p}}(Z; \mathbf{X}; \hat{\theta}_{N_{p}})$
- Optimization error: $\hat{\theta}_{N_p}$ unknown, θ_{SGD} instead, by SGD

17/09/2020, CHES| Loïc Masure, Cécile Dumas, Emmanuel Prouff | 12/18

Tightness of the Lower Bound

Ceatech

To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:

- Approximation error: $\sup_{\theta \in \Theta} PI(Z; \mathbf{X}; \theta) MI(Z; \mathbf{X}) \leq 0$
- ► Estimation error: $N_{p} < \infty \implies \sup_{\theta \in \Theta} \mathsf{Pl}(Z; \mathbf{X}; \theta) \rightarrow \widehat{\mathsf{Pl}}_{N_{p}}(Z; \mathbf{X}; \hat{\theta}_{N_{p}})$
- Optimization error: $\hat{\theta}_{N_p}$ unknown, θ_{SGD} instead, by SGD

 \implies Ideally each error must be discussed through simulations and experiments

P

Ceatech

leti

Outline

- 1. Context
- 2. SCA Optimization Problem versus Deep Learning Based SCA
- 3. NLL Minimization is PI Maximization

4. Simulation results

5. Experimental results

Leakage model

Ceatech

- Hamming weight with additive gaussian noise ($\sigma \in [0.01; 3.2]$)
- Draw an Exhaustive dataset: estimation error negligible

Leakage model

Ceatech

- Hamming weight with additive gaussian noise ($\sigma \in [0.01; 3.2]$)
- Draw an Exhaustive dataset: estimation error negligible

PI/MI computation

► Computation of MI (X; Z) with Monte-Carlo simulations

Leakage model

Ceatech

- Hamming weight with additive gaussian noise ($\sigma \in [0.01; 3.2]$)
- Draw an Exhaustive dataset: estimation error negligible

PI/MI computation

- Computation of MI (X; Z) with Monte-Carlo simulations
- ► Training of a one layer MLP with 1,000 neurons to maximize $PI(Z; \mathbf{X}; \theta) = n \mathcal{L}(\theta)$, where n = 4 bits

Leakage model

Ceatech

- ▶ Hamming weight with additive gaussian noise ($\sigma \in [0.01; 3.2]$)
- Draw an Exhaustive dataset: estimation error negligible

PI/MI computation

- Computation of MI (X; Z) with Monte-Carlo simulations
- ► Training of a one layer MLP with 1,000 neurons to maximize $PI(Z; \mathbf{X}; \theta) = n \mathcal{L}(\theta)$, where n = 4 bits

Several case studies

- ► Higher-order masking: sensitive variable split into *d* independent parts
- Shuffling: independent operations (e.g. 16 SBoxes in SubBytes) randomly shuffled

Simulation results

Figure: H-O masking, w.r.t. level of noise

Figure: Shuffling, w.r.t. level of noise

Simulation results

Ceatech

Figure: H-O masking, w.r.t. level of noise

Figure: Shuffling, w.r.t. level of noise

What to interpret

• No matter the masking order, $PI(Z; \mathbf{X}; \theta_{SGD}) \approx MI(Z; \mathbf{X})$

Simulation results

Ceatech

Figure: H-O masking, w.r.t. level of noise

Figure: Shuffling, w.r.t. level of noise

What to interpret

- ▶ No matter the masking order, $PI(Z; X; \theta_{SGD}) \approx MI(Z; X)$
- For a simple MLP, the approximation error and the optimization error are negligible

Simulation results

Ceatech

Figure: H-O masking, w.r.t. level of noise

Figure: Shuffling, w.r.t. level of noise

What to interpret

- ▶ No matter the masking order, $PI(Z; X; \theta_{SGD}) \approx MI(Z; X)$
- For a simple MLP, the approximation error and the optimization error are negligible
- Any more *complex* model should have a negligible approximation error too
- Empirical verifications: see appendix

Ceatech

leti

Outline

- 1. Context
- 2. SCA Optimization Problem versus Deep Learning Based SCA
- 3. NLL Minimization is PI Maximization
- 4. Simulation results
- 5. Experimental results

• $N_a(\theta)$: number of traces obtained with key recovery.

Ceatech

• $N_a(\theta)$: number of traces obtained with key recovery.

► So far:
$$N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$$
 and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$

- ► $N_a(\theta) \frac{f(\beta)}{\Pr(Z;X;\theta)} \approx \frac{f(\beta)}{n-\mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- So far: $N_a^{\star} \geq \frac{f(\beta)}{\operatorname{MI}(Z;\mathbf{X})}$ and $\operatorname{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \operatorname{MI}(Z;\mathbf{X})$

Ceatech

- ► $N_a(\theta) \frac{f(\beta)}{\Pr(Z; \mathbf{X}; \theta)} \approx \frac{f(\beta)}{n \mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- ► So far: $N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$ and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$
- Tests on public datasets, using architectures proposed in recent papers [MDP19; Kim+19]

Ceatech

- ► $N_a(\theta) \frac{f(\beta)}{\Pr(Z; \mathbf{X}; \theta)} \approx \frac{f(\beta)}{n \mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- ► So far: $N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$ and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$
- Tests on public datasets, using architectures proposed in recent papers [MDP19; Kim+19]
- \blacktriangleright Relative error ϵ computed at final epoch

Ceatech

- ► $N_a(\theta) \frac{f(\beta)}{\Pr(Z; \mathbf{X}; \theta)} \approx \frac{f(\beta)}{n \mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- ► So far: $N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$ and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$
- Tests on public datasets, using architectures proposed in recent papers [MDP19; Kim+19]
- \blacktriangleright Relative error ϵ computed at final epoch

Micro-controller protected with misalignment

Figure: AES-RD: $\epsilon = 0.16$

Ceatech

- ► $N_a(\theta) \frac{f(\beta)}{\Pr(Z; \mathbf{X}; \theta)} \approx \frac{f(\beta)}{n \mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- ► So far: $N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$ and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$
- Tests on public datasets, using architectures proposed in recent papers [MDP19; Kim+19]
- Relative error ϵ computed at final epoch

Ceatech

- ► $N_{a}(\theta) \frac{f(\beta)}{\Pr(Z; \mathbf{X}; \theta)} \approx \frac{f(\beta)}{n \mathcal{L}(\theta)}$: number of traces obtained with key recovery?
- ► So far: $N_a^{\star} \ge \frac{f(\beta)}{\mathsf{MI}(Z;\mathbf{X})}$ and $\mathsf{PI}(Z;\mathbf{X};\theta_{SGD}) \approx \mathsf{MI}(Z;\mathbf{X})$
- Tests on public datasets, using architectures proposed in recent papers [MDP19; Kim+19]
- \blacktriangleright Relative error ϵ computed at final epoch

Figure: AES-RD: $\epsilon = 0.16$

Figure: AES-HD: $\epsilon = 0.18$

Conclusion

Takeaway messages

Conclusion

Takeaway messages

1. Minimizing the NLL loss \equiv maximizing the PI \implies tight lower bound of the MI \implies accurate estimation of N_a^*

Conclusion

Ceatech

Takeaway messages

- 1. Minimizing the NLL loss \equiv maximizing the PI \implies tight lower bound of the MI \implies accurate estimation of N_a^*
- 2. NLL as a loss function is sound from an evaluator point of view

Conclusion

Ceatech

Takeaway messages

- 1. Minimizing the NLL loss \equiv maximizing the PI \implies tight lower bound of the MI \implies accurate estimation of N_a^*
- 2. NLL as a loss function is sound from an evaluator point of view
- 3. Enables to quantitatively measure the impact of counter-measures

Thank You!

Questions?

Looking for a postdoc candidate in machine-learning-based SCA? Hire me!

References I

Ceatech

 [CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff.
 "Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-processing". In: Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in Computer Science. Springer, 2017, pp. 45–68. ISBN: 978-3-319-66786-7. DOI: 10.1007/978-3-319-66787-4_3. URL: https://doi.org/10.1007/978-3-319-66787-4_3.

[Kim+19] Jaehun Kim et al. "Make Some Noise. Unleashing the Power of Convolutional Neural Networks for Profiled Side-channel Analysis". In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.3 (2019), pp. 148–179. DOI: 10.13154/tches.v2019.i3.148-179. URL: https: //tches.iacr.org/index.php/TCHES/article/view/8292.

References II

Ceatech

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. "Breaking Cryptographic Implementations Using Deep Learning Techniques". In: Security, Privacy, and Applied Cryptography Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings. Ed. by Claude Carlet, M. Anwar Hasan, and Vishal Saraswat. Vol. 10076. Lecture Notes in Computer Science. Springer, 2016, pp. 3–26. ISBN: 978-3-319-49444-9. DOI: 10.1007/978-3-319-49445-6_1. URL: https://doi.org/10.1007/978-3-319-49445-6_1.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. "Gradient Visualization for General Characterization in Profiling Attacks". In: Constructive Side-Channel Analysis and Secure Design - 10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings. Ed. by Ilia Polian and Marc Stöttinger. Vol. 11421. Lecture Notes in Computer Science. Springer, 2019, pp. 145–167. ISBN: 978-3-030-16349-5. DOI: 10.1007/978-3-030-16350-1_9. URL: https://doi.org/10.1007/978-3-030-16350-1_9.

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 20/18

References III

Ceatech

[Pic+18] Stjepan Picek et al. "The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations". In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.1 (2018), pp. 209–237. DOI: 10.13154/tches.v2019.i1.209-237. URL: https: //tches.iacr.org/index.php/TCHES/article/view/7339.

[Vey+12] Nicolas Veyrat-Charvillon et al. "Shuffling against Side-Channel Attacks: A Comprehensive Study with Cautionary Note". In: Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science. Springer, 2012, pp. 740–757. ISBN: 978-3-642-34960-7. DOI: 10.1007/978-3-642-34961-4_44. URL: https://doi.org/10.1007/978-3-642-34961-4_44.

Our home dataset

Figure: ChipWhisperer-Lite board

Algorithm 1 loadData	
1: LD r0, X 2: CLR r0 3: ST X, r0 4: LD r0, X 5: CLR r0 6: ST X, r0	▷ Loads the first byte in r0 ▷ Clears the register ▷ Stores 0 in the plaintext array ▷ Do it again to clear the bus
7: LD r0, X 8: CLR r0 9: ST X+, r0	▷ One more time to be sure

Loads sequentially an array of 16 bytes into one register and clears it \implies no joint leakage at order $d \ge 2$. 500,000 traces acquired. We only work on n = 4 bits, $|\mathcal{Z}| = 2^n = 16$.

Experiment on ChipWhisperer-Lite: masking

• Emulation of order *d* leakages: $Z = \bigoplus_{i \in [0,d]} plain[i]$ for $d \in \{0, 1, 2\}$

- Extraction of Pols according to SNR.
- ► Learning curve: $PI(Z; \mathbf{X}; \theta_{SGD})$ and $\widehat{PI_{N_p}}(Z; \mathbf{X}; \theta_{SGD})$ w.r.t. N_p \implies measures the estimation error.

Experiment on ChipWhisperer-Lite: masking

► Emulation of order *d* leakages: Z = ⊕_{i∈[0,d]} plain[i] for d ∈ {0,1,2}

- Extraction of Pols according to SNR.
- ► Learning curve: $PI(Z; \mathbf{X}; \theta_{SGD})$ and $\widehat{PI_{N_p}}(Z; \mathbf{X}; \theta_{SGD})$ w.r.t. N_p \implies measures the estimation error.

Experiment on ChipWhisperer-Lite: masking

- ► Emulation of order *d* leakages: Z = ⊕_{i∈[0,d]} plain[i] for d ∈ {0,1,2}
- Extraction of Pols according to SNR.
- ► Learning curve: $PI(Z; \mathbf{X}; \theta_{SGD})$ and $\widehat{PI_{N_p}}(Z; \mathbf{X}; \theta_{SGD})$ w.r.t. N_p \implies measures the estimation error.

What to interpret

Ceatech

 \blacktriangleright \approx one decade lost for each new masking order \implies masking remains sound

Experiment on ChipWhisperer-Lite: masking

- ► Emulation of order *d* leakages: Z = ⊕_{i∈[0,d]} plain[i] for d ∈ {0,1,2}
- Extraction of Pols according to SNR.
- ► Learning curve: $PI(Z; \mathbf{X}; \theta_{SGD})$ and $\widehat{PI_{N_p}}(Z; \mathbf{X}; \theta_{SGD})$ w.r.t. N_p \implies measures the estimation error.

What to interpret

- \blacktriangleright \approx one decade lost for each new masking order \implies masking remains sound
- Masking has an effect on the estimation error

Experiment on ChipWhisperer-Lite: masking

- ► Emulation of order *d* leakages: Z = ⊕_{i∈[0,d]} plain[i] for d ∈ {0,1,2}
- Extraction of Pols according to SNR.
- ► Learning curve: $PI(Z; \mathbf{X}; \theta_{SGD})$ and $\widehat{PI_{N_p}}(Z; \mathbf{X}; \theta_{SGD})$ w.r.t. N_p \implies measures the estimation error.

What to interpret

- \blacktriangleright \approx one decade lost for each new masking order \implies masking remains sound
- Masking has an effect on the estimation error
- For d = 3, $N_p < 100,000$, no information !

- Emulation of order c shuffling: Z = plain[i] where i is randomly drawn from a subset of c indices
- Complete trace: D = 250

- Emulation of order c shuffling: Z = plain[i] where i is randomly drawn from a subset of c indices
- Complete trace: D = 250

Figure: Exp. 5, shuffling

Ceatech

- Emulation of order c shuffling: Z = plain[i] where i is randomly drawn from a subset of c indices
- Complete trace: D = 250

Figure: Exp. 5, shuffling

What to interpret

▶ Linear decrease of PI, as expected [Vey+12]

17/09/2020, CHES | Loïc Masure, Cécile Dumas, Emmanuel Prouff | 24/18

Ceatech

Emulation of order *c* shuffling:
 Z = *plain*[*i*] where *i* is randomly drawn from a subset of *c* indices
 Complete trace: *D* = 250

Figure: Exp. 5, shuffling

What to interpret

- ▶ Linear decrease of PI, as expected [Vey+12]
- Clearly over-fitting: the estimation error non-negligible