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Profiling Attack
Attack using open samples similar to the target device — same code, same chip,
etc. — with full knowledge of the secret key
Two steps:
» Profiling phase: P, K known = Z known, X acquired on an open
sample
» Attack phase: P known, X acquired on the target device, K guessed
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2. SCA Optimization Problem versus Deep Learning
Based SCA
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Profiling Attacks

Key Recovery (i.e. attack step)

Given N, attack traces x; with plaintext p;, calculate scores y; = F(x;)
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0 1 Z; = C(pi, k*) 0 1 K
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Goal: find F that minimizes N, s.t. k = k* with probability > 3 (e.g. 0.9)
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Requires to know the probability distribution F* = Pr[Z|X]
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Goal: find F that minimizes N, s.t. k = k* with probability > 3 (e.g. 0.9)
Optimal model: F*, with N} traces

4

How to find — profiling step

Requires to know the probability distribution F* = Pr[Z|X]
Reality: unknown for the evaluator/attacker. Estimation with parametric
models F(.,0):

pzx= I

i |
F(.50)

0% 20% 40% 60% 80% 100%
X mZ=0 mz=1
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Deep Learning (DL) based SCA is a hot topic currently

Recent milestones about its effectiveness: more robust against
counter-measures like masking [MPP16], jitter (misalignment) [CDP17],
whether on software or FPGA [Kim+19]
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whether on software or FPGA [Kim+19]

Training a Neural Network

I

F(x,0) —— 4 ——— £(y,2)

Parameters 6

L: performance metric (accuracy, recall, ...) or loss function (Mean Square

Error, NLL, ...
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Open issue with Machine Learning based SCA!

“How to evaluate the quality of a model during training?”

!Picek et al., CHES 2019 [Pic+18]
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Their observations

" Accuracy does not seem to be the right performance metric in SCA”
» High accuracy = successful key recovery
» Low accuracy = nothing, problem: often happens (e.g. highly noisy
leakages)
» Apparently, no other machine learning metric related to SCA metrics

Accuracy: find S s.t. N =1 # SCA: fix 5 and find N instead

Our claim: we can accurately estimate /V; with DL !

'Picek et al., CHEs 2019 [Pic+18]
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Bridging the gap between the loss function and the SCA metric

Training: minimization of the NLL a.k.a. Cross Entropy

£0)= o > loga Flx 6)[z] = H(Z) — Pl (7:%:0)

H(Z) |- g mm oo

PI(Z;X;0) < MI(Z;X)
MI(Z;X) > f6) Bronchain et al. CRYPTO 19

Cherisey et al. CHES 19

This talk —>XR’EZ [£(0)]

| f(8) = n— (1 - B)loga(2" — 1) +

H(Z|X) |- - - - 2
Bloga(B) + (1 — B)loga(1 — B)
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Main Result

Proposition
Let éNp = argmin, £(0) = argmax, P/Iﬁp (Z;X;0). Then:

Pl(z;x;éNp> N sup PI (Z; X;0) < MI(Z;X)

Np— o0

MI(Z; X)

H(Z|X)

> Steps
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To what extent the gap PI/MI is negligible?

Gap composed of three kinds of errors:
» Approximation error: supyco P1(Z;X;0) —MI(Z;X) <0

» Estimation error: N, < 0o = stpgeg PHZXH) — P/I/\Vp <Z; X; 0/\/,)>

» Optimization error: éNp unknown, Oscp instead, by SGD

—> ldeally each error must be discussed through simulations and experiments
L£(0)
H(Z)]

H(Z|X)
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Settings of the simulations

Leakage model

» Hamming weight with additive gaussian noise (o € [0.01;3.2])
» Draw an Exhaustive dataset: estimation error negligible
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» Draw an Exhaustive dataset: estimation error negligible

4

P1/MI computation

» Computation of Ml (X; Z) with Monte-Carlo simulations
» Training of a one layer MLP with 1,000 neurons to maximize
P1(Z;X;0) = n— L(0), where n = 4 bits

v

Several case studies

» Higher-order masking: sensitive variable split into d independent parts
» Shuffling: independent operations (e.g. 16 SBoxes in SubBytes) randomly
shuffled
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B MI(Z, X), 1 share N 3 No shuffle .0
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Figure: H-O masking, w.r.t. level of noise Figure: Shuffling, w.r.t. level of noise

What to interpret
» No matter the masking order, P1(Z; X; 0scp) = MI (Z; X)
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Figure: H-O masking, w.r.t. level of noise Figure: Shuffling, w.r.t. level of noise

What to interpret

» No matter the masking order, P1(Z; X; 0scp) = MI (Z; X)
» For a simple MLP, the approximation error and the optimization error are
negligible
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1071 h ‘ TR SRN
* N g —1_ <
& MI(Z,X), 1 share T & 10 No shuffle *. 0
10-3 MI(Z,X), 2 shares : Shuffle 2 bytes N
—+ MI(Z,X), 3 shares ' 10—2, — Shuffle 4 bytes B
MI(Z, X), 4 shares Shuffle 16 bytes
Pl N PI(Z, X; 0)
1075 T T 1073 o T T
1072 10-! 10° 102 10-1 10°
o o
Figure: H-O masking, w.r.t. level of noise Figure: Shuffling, w.r.t. level of noise

What to interpret

» No matter the masking order, P1(Z; X; 0scp) = MI (Z; X)

» For a simple MLP, the approximation error and the optimization error are
negligible

» Any more complex model should have a negligible approximation error too

» Empirical verifications: see appendix
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> NoA(6) 5 er ~ %: number of traces obtained with key recovery?
> So far: NI > Mf(ﬁ and P1(Z;X; 0sep) = MI (Z; X)

» Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]
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> NoA(6) 5 er ~ i(f()e): number of traces obtained with key recovery?

n

> So far: N} > and PI(Z; X; 0scp) ~ MI(Z; X)

f(8

MI(ZX

» Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

» Relative error ¢ computed at final epoch
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> NoA(6) 5 er ~ ni(f()e): number of traces obtained with key recovery?

> So far: NI > Mf(ﬁ and PI(Z; X; 0scp) = MI (Z; X)

» Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

» Relative error ¢ computed at final epoch

Micro-controller protected
with misalignment

i1 o

Figure: AES-RD: ¢ = 0.16
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Application on Public Datasets

> NoA(6) 5 zxe ~ i(f()e): number of traces obtained with key recovery?

> So far: NI > Mf(ﬁ and PI(Z; X; 0scp) = MI (Z; X)

» Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

» Relative error ¢ computed at final epoch

Micro-controller protected Micro-controller protected

with misalignment with masking
10‘ b fgﬂw(m& m»‘: :Ei’mtwe'v
m“ ‘ T T 1 mz] T T T T T A.
100 150 200 0 5 10 15 20 25 30
Epoch Epoch
Figure: AES-RD: ¢ = 0.16 Figure: ASCAD: ¢ = 0.16
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Application on Public Datasets

> NoA(6) 5 zxe ~ i(f()e): number of traces obtained with key recovery?

> So far: NI > Mf(ﬁ and PI(Z; X; 0scp) = MI (Z; X)

» Tests on public datasets, using architectures proposed in recent
papers [MDP19; Kim+19]

» Relative error ¢ computed at final epoch

Micro-controller protected Micro-controller protected Implementation on FPGA
with misalignment with masking (no counter-measure)
102 N 40 7 e : ‘ a4p
Key recovery 10° 3 Key recovery Key recovery
‘ ] | 0%
mn ‘ } } | “’2" : : ; i ; AI 102 ; : ; .
100 150 200 0 5 10 15 20 25 30 0 10 20 30 40 50
Epoch Epoch Epoch
Figure: AES-RD: ¢ = 0.16 Figure: ASCAD: ¢ = 0.16 Figure: AES-HD: ¢ = 0.18
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Conclusion

Takeaway messages

1. Minimizing the NLL loss = maximizing the Pl — tight lower bound of
the Ml = accurate estimation of N

2. NLL as a loss function is sound from an evaluator point of view

3. Enables to quantitatively measure the impact of counter-measures

Thank You! Questions?

Looking for a postdoc candidate in
machine-learning-based SCA? Hire
me!
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Algorithm 1 loadData

1: LD 0, X 1> Loads the first byte in r0
2: CLR 10 D> Clears the register
3: 5T X, r0 > Stores 0 in the plaintext array
4: LD 10, X > Do it again to clear the bus
5: CLR 10

6: STX, 10

7:LDr0, X > One more time to be sure
8: CLR 10

9: ST X+, 10

Loads sequentially an array of 16 bytes
into one register and clears it = no
joint leakage at order d > 2.

500, 000 traces acquired.

We only work on n = 4 bits,

|Z| = 2" = 16.

Order 1

Order 2

o 2 50 ™ 100 125 150 w20

Figure: SNR at orders d = 1,2
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Experiment on ChipWhisperer-Lite: masking

» Emulation of order d leakages:
Z = D¢y, Plain[i] for

d €{0,1,2}
» Extraction of Pols according to
SNR.

» Learning curve: Pl (Z;X; 0scp)
and Ply, (Z: X 0sep) w.r.t. N,
= measures the estimation
error.

17{09/2020, CHES| Loic Masure, Cécile Dumas, Emmanuel Prouff | 23/18



A Comprehensive Study of Deep Learning for Side-Channel l. -
eti

Analysis

Experiment on ChipWhisperer-Lite: masking

» Emulation of order d leakages: o —_—
Z = D¢y, Plain[i] for )
d €{0,1,2} 107

> Extraction of Pols according to - it T —
SNR. 1072 PG, D20 One e

» Learning curve: Pl (Z;X; 0scp) P 51500, O e
and Ply, (7%, 0scp) wrt. N, 107 . — -
= measures the estimation 0 10000&0;3:22?3;00000 400000
error.
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Experiment on ChipWhisperer-Lite: masking

» Emulation of order d leakages: 100 _
Z = D¢y, Plain[i] for )
de {0, 1, 2} 1()*1§ b
» Extraction of Pols according to & i phi s TR R
SNR. P e
» Learning curve: Pl (Z;X; 0scp) : / P 51500, O e
— / Three shares
and P|/\/P (Z; X: ()SGD) w.r.t. Np 1073 T T T T
— measures the estimation 0 100000 200000 300000 400000
Profiling traces
error.

What to interpret

» =~ one decade lost for each new masking order = masking remains
sound
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Z = D¢y, Plain[i] for )
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» Extraction of Pols according to & i phi s TR R
SNR. P e
» Learning curve: Pl (Z;X; 0scp) : / P 51500, O e
— / Three shares
and P|/\/P (Z; X: ()SGD) w.r.t. Np 1073 T T T T
— measures the estimation 0 100000 200000 300000 400000
Profiling traces
error.

What to interpret

» =~ one decade lost for each new masking order = masking remains
sound
» Masking has an effect on the estimation error
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Experiment on ChipWhisperer-Lite: masking

» Emulation of order d leakages: 100 _
Z = D¢y, Plain[i] for )
de {0, 1, 2} 1()*1§ b
» Extraction of Pols according to & i phi s TR R
SNR. P e
» Learning curve: Pl (Z;X; 0scp) : / P 51500, O e
— / Three shares
and P|/\/P (Z; X: ()SGD) w.r.t. Np 1073 T T T T
— measures the estimation 0 100000 200000 300000 400000
Profiling traces
error.

What to interpret

» =~ one decade lost for each new masking order = masking remains
sound

» Masking has an effect on the estimation error

» For d = 3, N, < 100,000, no information !
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Experiment 5: shuffling

» Emulation of order ¢ shuffling:
Z = plain[i] where i is randomly
drawn from a subset of c indices

» Complete trace: D = 250
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Experiment 5: shuffling

100;
o AR AR S AR
g 107
» Emulation of order ¢ shuffling: z : l( el
. .. — -2
Z = plain[i] where i is randomly F 0 c=2

—_—c=4

drawn from a subset of c indices - c=16

» Complete trace: D = 250 0 20 40 60 S0 100

Epoch

=
o
|

@

Figure: Exp. 5, shuffling
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Experiment 5: shuffling

100;
& 1071
» Emulation of order ¢ shuffling: z : l( c=1
. L. N -2

Z = plain[i] where i is randomly Fw L n
drawn from a subset of ¢ indices . LIRS

. _ 10~ T T T T T T
» Complete trace: D = 250 0 20 40 60 8 100

Epoch

Figure: Exp. 5, shuffling

What to interpret
» Linear decrease of Pl, as expected [Vey+12]
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Experiment 5: shuffling

» Emulation of order ¢ shuffling:
Z = plain[i] where i is randomly
drawn from a subset of c indices

» Complete trace: D = 250

What to interpret

100
-1
;;j 10
>< l
N . ci=H1!
R 02 oy
& — o= 4
i c=16
1073 — T T T T T

0 20 40 60 80
Epoch

100

Figure: Exp. 5, shuffling

» Linear decrease of Pl, as expected [Vey+12]
» Clearly over-fitting: the estimation error non-negligible
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