ZOCB and ZOTR: Tweakable Blockcipher Modes for Authenticated Encryption with Full Absorption

Zhenzhen Bao, NTU, Singapore Jian Guo, NTU, Singapore Tetsu Iwata, Nagoya University, Japan Kazuhiko Minematsu, NEC corporation, Japan

> FSE 2020 November 9–13, 2020, Virtual

Overview: ZOCB and ZOTR

- nonce-based authenticated encryption with associated data (AEAD)
- use a tweakable blockcipher (TBC) as the underlying primitive
- fully utilize the input of the TBC to process a plaintext and associated data (AD)
 - full absorption
 - reduce the number of TBC calls of $\Theta CB3$ and \mathbb{OTR}
- have a unique design feature that an authentication tag is independent of a part of AD

Outline

- Background
- ZOCB and ZOTR
- Instantiation and implementation
 - TAES, a TBC based on AES-256
- Conclusions

Outline

- \triangleright Background
- ZOCB and ZOTR
- Instantiation and implementation
 - TAES, a TBC based on AES-256
- Conclusions

AEAD

- nonce-based authenticated encryption with associated data (AEAD)
 - privacy and authenticity of plaintexts
 - authenticity of associated data (AD)

- various design approaches
 - dedicated design
 - blockcipher
 - tweakable blockcipher (TBC)
 - cryptographic permutation
 - pseudorandom function

AEAD

- nonce-based authenticated encryption with associated data (AEAD)
 - privacy and authenticity of plaintexts
 - authenticity of associated data (AD)

- various design approaches
 - dedicated design
 - blockcipher
 - tweakable blockcipher (TBC)
 - cryptographic permutation
 - pseudorandom function

ΘCB3

- AEAD scheme based on a TBC [KR11]
- was not proposed as a standalone AEAD mode of TBCs, but was introduced as an abstraction of OCB3 for a security proof
- employed in many proposals for its strong features
 - strong provable security result
 - fully parallelizable

[[]KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated- Encryption Modes. FSE 2011

ΘCB3

• E_K is a TBC, and S is the checksum of M

- The process for M and that for A are separated. Can we efficiently integrate these processes?
 - explored for sponge-based [SY15, MRV15] and PRF-based AEAD schemes [RVV15]

[[]SY15] Yu Sasaki and Kan Yasuda. How to Incorporate Associated Data in Sponge- Based Authenticated Encryption. CT-RSA 2015 [MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State Keyed Sponge and Duplex: Applications to Authenticated Encryption. ASIACRYPT 2015 [RVV15] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Boosting OMD for Almost Free Authentication of Associated Data. FSE 2015

Idea

• use the tweak input to process A[i] to fully utilize the input, "full absorption"

• rely on masks for the counter and nonce [Rog04, MI15, IMPS17], $lpha=E_K^{3,0}(N), eta=E_K^{3,1}(N)$

[[]Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. ASIACRYPT 2004

[[]MI15] Kazuhiko Minematsu and Tetsu Iwata. Tweak-Length Extension for Tweakable Blockciphers. IMACC 2015

[[]IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin. ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication. CRYPTO 2017

From Θ CB3 to iZOCB

- $\bullet \ |M|=3n, |M[i]|=n, 2n<|A|<3n, |A[1]|=|A[2]|=n$
- $S = M[1] \oplus M[2] \oplus M[3]$
- (many details are omitted)

Secure?

- · Privacy is fine, from the uniqueness of the nonce and counter
- For authenticity, $S = M[1] \oplus M[2] \oplus M[3]$, T is independent of A[1] and A[2]
 - does not seem to provide authenticity...

Secure?

- Privacy is fine, from the uniqueness of the nonce and counter
- For authenticity, $S = M[1] \oplus M[2] \oplus M[3]$, T is independent of A[1] and A[2]
 - does not seem to provide authenticity...
 - when we decrypt (N, A, C, T), the computed tag from (N, A, C) that is compared with T, depends on the entire AD
 - works!

From iZOCB to ZOCB

• ZOCB is obtained from iZOCB by instantiating $\widetilde{\mathsf{E}}$ with a TBC E

From iZOCB to ZOCB

- |M| = 3n, |M[i]| = n, 2n < |A| < 3n, |A[1]| = |A[2]| = n
- $\alpha = E_K^{3,0}(N), \beta = E_K^{3,1}(N), S = M[1] \oplus M[2] \oplus M[3]$
- If AD is not long, there is no separate process for AD, and the process of AD is fully integrated into the process of a plaintext
- If AD is long, there is a separate process for it

Provable Security Results

- standard security notions of nonce-based AEAD schemes [Rog02]
 - privacy: indistinguishability from random bits under CPA
 - authenticity: unforgeability under CCA
 - nonce-respecting adversaries
 - $E_K : \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n$
- $\mathbf{Adv}_{\mathrm{ZOCB}[\mathrm{Perm}(\mathcal{W},n)]}^{\mathrm{priv}}(\mathcal{A}) \leq 4\sigma_{\mathrm{priv}}^2/2^{n+\min\{n,t\}}$
- $\mathbf{Adv}_{\mathbf{ZOCB}[\operatorname{Perm}(\mathcal{W},n)]}^{\operatorname{auth}}(\mathcal{A}) \leq 4\sigma_{\operatorname{auth}}^2/2^{n+\min\{n,t\}} + 4q'/2^n$
- ZOCB has the full n-bit security when $t \ge n$

[[]Rog02] Phillip Rogaway. Authenticated-Encryption with Associated-Data. ACM CCS 2002

ZOTR

- OTR is an AEAD scheme based on a blockcipher with all the features of OCB3, without using decryption of the blockcipher [Min14]
 - provable security, full parallelizability
- makes use of two round Feistel network
- \mathbb{OTR} is the TBC-based counterpart
 - has a separate process of AD
 - makes the same number of TBC calls as $\Theta CB3$
 - we can integrate the process of AD into that of a plaintext

[[]Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. EUROCRYPT 2014

From \mathbb{OTR} to iZOTR

• The process of AD is integrated into the process of a plaintext

From iZOTR to ZOTR

• ZOTR is obtained from iZOTR by instantiating $\widetilde{\mathsf{E}}$ with E

– slightly simpler than the case of ZOCB, since the decryption of ${\it E}$ is not involved

Provable Security Results

- standard security notions of nonce-based AEAD schemes [Rog02]
 - $E_K : \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n$
- $\mathbf{Adv}_{\mathrm{ZOTR[Perm}(\mathcal{W},n)]}^{\mathrm{priv}}(\mathcal{A}) \leq 4\sigma_{\mathrm{priv}}^2/2^{n+\min\{n,t\}}$
- $\mathbf{Adv}_{\mathrm{ZOTR}[\mathrm{Perm}(\mathcal{W},n)]}^{\mathrm{auth}}(\mathcal{A}) \leq 4\sigma_{\mathrm{auth}}^2/2^{n+\min\{n,t\}} + 6q'/2^n$
- ZOTR also has the full n-bit security when $t \ge n$

[[]Rog02] Phillip Rogaway. Authenticated-Encryption with Associated-Data. ACM CCS 2002

Comparison

Scheme	Prim.	$\begin{tabular}{ c c c } \end{tabular} & \end{tabular} \\ \hline a < m & a \ge m \end{tabular} \end{tabular}$	Inv.	Para.	Security	Ref.
OCB3 OTR	n-BC n-BC	$\begin{vmatrix} a+m\\a+m \end{vmatrix}$	N Y	Y Y	n/2 n/2	[KR11] [Min14]
OTR	(n,t)-TBC (n,t)-TBC	$\begin{vmatrix} a+m\\a+m \end{vmatrix}$	N Y	Y Y	n n	[KR11] [Min14]
ZOCB ZOTR	$ \begin{vmatrix} (n,t)\text{-}TBC \\ (n,t)\text{-}TBC \end{vmatrix} $	$ \begin{vmatrix} m & (a+m)/2 \\ m & (a+m)/2 \end{vmatrix} $	N Y	Y Y	$ \min\{n, (n+t)/2\} \\ \min\{n, (n+t)/2\} $	Ours Ours

• n-BC is a blockcipher, (n, t)-TBC is a TBC with t-bit tweaks

• # of calls is for *at*-bit AD and *mn*-bit plaintexts (n = t), neglecting constant number

[[]KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated- Encryption Modes. FSE 2011

[[]Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. EUROCRYPT 2014

Cost

- The use of a mask requires a doubling operation
- The tweak does not behave like a counter, and updating the tweak can add a computational cost
- If AD is short, then ZOCB/ZOTR can be slower if the cost for doubling is larger than the efficiency gain
- In order to see the practical efficiency gain, we instantiated and implemented ZOCB and ZOTR

Outline

- Background
- ZOCB and ZOTR
- \triangleright Instantiation and implementation
 - TAES, a TBC based on AES-256
- Conclusions

Instantiation

- Tweakable AES, TAES, a 128-bit block, 128-bit key, 128-bit tweak TBC
- obtained from AES-256, where $key \| tweak$ is used as the AES-256 key
 - The TAES key is placed in the first part of the AES-256 key (used as the whitening key)
 - We claim 128-bit security of TAES, in the single key setting
 - Related-key attacks in [BK09] cannot be directly applied

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192 and AES-256. ASIACRYPT 2009

• TAES-{ Θ CB3, ZOCB}, Intel(R) Core(R) i5-6500 CPU, 3.20 GHz (Skylake family)

• TAES-{ Θ CB3, ZOTR}, Intel(R) Xeon(R) E5-2603 v3 CPU, 1.60 GHz (Haswell family)

- We also implemented SKINNY-ZOCB/ZOTR/ Θ CB3, where SKINNY-128-256 [BJK+16] is used
- Source code, raw data, and the graphs are available at https://github.com/zocbzotr

[[]BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. CRYPTO 2016

- For short input data ($|A| \lesssim 480$ bytes or $|A|/|M| \lesssim 0.12$), TAES-ZOCB and TAES-ZOTR are not (always) as fast as TAES- Θ CB3
- For long input data ($|A|\gtrsim 480$ bytes and $|A|/|M|\gtrsim 0.12$), TAES-ZOCB and TAES-ZOTR perform better than TAES- Θ CB3
- Asymptotically with long data ($|A|/|M| \gtrsim 0.12$), the performance gain of TAES-ZOCB/ZOTR is about 40%, they are about 1.7× faster than TAES- Θ CB3
- Similar observations hold for SKINNY-ZOCB/ZOTR/OCB3

Outline

- Background
- ZOCB and ZOTR
- Instantiation and implementation
 - TAES, a TBC based on AES-256
- ▷ Conclusions

Conclusions

- We designed ZOCB and ZOTR
 - reduce the number of TBC calls of $\Theta CB3$ and \mathbb{OTR}
- provable security results
- software implementation results
- Future directions/open questions
 - designing a TBC with large tweak space with efficient tweak update
 - detailed security analysis of TAES
 - apply the design approach of ZOCB/ZOTR to other TBC-based constructions
 - tweakable enciphering schemes
 - robust AE schemes
 - online AE schemes

Conclusions

- We designed ZOCB and ZOTR
 - reduce the number of TBC calls of $\Theta CB3$ and \mathbb{OTR}
- provable security results
- software implementation results
- Future directions/open questions
 - designing a TBC with large tweak space with efficient tweak update
 - detailed security analysis of TAES
 - apply the design approach of ZOCB/ZOTR to other TBC-based constructions
 - tweakable enciphering schemes
 - robust AE schemes
 - online AE schemes

Thank you!