Beyond Birthday Bound Secure Fresh Rekeying: Application to Authenticated Encryption

Bart Mennink

Radboud University (The Netherlands)

ASIACRYPT 2020 December 7–11, 2020

Introduction

- Block cipher based constructions invoke the secret key many times
- Typical examples:
 - CTR and CBC encryption
 - OCBx, and its generalization ΘCB [KR11] (depicted for integral data)

Introduction

- Block cipher based constructions invoke the secret key many times
- Typical examples:
 - CTR and CBC encryption
 - ullet OCBx, and its generalization Θ CB [KR11] (depicted for integral data)

Repeated evaluation of the key —————— repeated leakage of the key

Countermeasures Against Leakage

Implementation Protection

- Protection on top
- Masking or hiding

Countermeasures Against Leakage

Implementation Protection

- Protection on top
- Masking or hiding

Leakage Resilience

- Protection by design
- Sometimes less efficient

Countermeasures Against Leakage

Implementation Protection

- Protection on top
- Masking or hiding

Rekeying

- Method-in-the-middle
- Leveled implementation

Leakage Resilience

- Protection by design
- Sometimes less efficient

Fresh Parallel Rekeying

Idea

- Make scarce use of key material
- Strong protection only needed for cryptographically light building blocks

Fresh Parallel Rekeying

Idea

- Make scarce use of key material
- Strong protection only needed for cryptographically light building blocks
- Rekeying: strong protection (e.g., against DPA), but not necessarily cryptographically strong

Fresh Parallel Rekeying

Idea

- Make scarce use of key material
- Strong protection only needed for cryptographically light building blocks
- Rekeying: strong protection (e.g., against DPA), but not necessarily cryptographically strong
- Core: must be cryptographically strong, but only needs lighter protection (e.g., against SPA)

Rekeying 2000 AB — Abdalla and Bellare formalized idea of rekeying

Rekeying

2000 AB — Abdalla and Bellare formalized idea of rekeying

2010 MSGR — Medwed et al. minimalized subkeying

Rekeying

Rekeying Versus Tweakable Block Ciphers

- The idea of rekeying reminds a bit of tweakable block ciphers
- Only difference, tweak change implies key change

Rekeying Versus Tweakable Block Ciphers

- The idea of rekeying reminds a bit of tweakable block ciphers
- Only difference, tweak change implies key change
- Known as tweak-rekeyable tweakable block ciphers

Beyond Birthday Bound Secure Fresh Rekeying

- Derivative of Men1
- $\kappa = \rho = n$
- $\approx 2n/3$ -bit security

Beyond Birthday Bound Secure Fresh Rekeying

- Derivative of Men1
- $\kappa = \rho = n$
- $\approx 2n/3$ -bit security

- Inspired by WGZ⁺12
- $\kappa = \rho = n$
- $\approx n$ -bit security

Beyond Birthday Bound Secure Fresh Rekeying

- Derivative of Men1
- $\kappa = \rho = n$
- $\approx 2n/3$ -bit security

- Inspired by WGZ⁺12
- $\kappa = \rho = n$
- $\approx n$ -bit security

- Adaptation of XHX
- $\approx (\kappa + n)/2$ -bit security
- Covers p-based rekeying

Cost Comparison

- Keep $\kappa = \rho = n$ for simplicity
- ullet F is RF, \widetilde{E} is TBC, E is BC
- ullet For sake of counting: consider n-bit finite field multiplication for h

	subkey			core			
scheme	F	\otimes/h	\widetilde{E}	E	\otimes	keysize	security
AB (2000)	1	0	0	1	0	n	2^n (as PRF)
MSGR (2010)	0	1	0	1	0	n	$2^{n/2}$
DKM ⁺ 1 (2014)	0	1	0	2	0	n	$2^{n/2}$
DKM ⁺ 2 (2014)	0	1	1	0	0	n	2^n
R1	0	1	0	1	1	n	$2^{2n/3}$
R2	0	1	0	2	0	n	2^n
R3	0	2	0	1	0	2n	2^n

- TBCs are a popular primitive for mode design
- Typical example: ΘCB [KR11]

- TBCs are a popular primitive for mode design
- Typical example: ΘCB [KR11]
 - ullet OCB3 [KR11] \equiv Θ CB instantiated with XEX construction

- TBCs are a popular primitive for mode design
- Typical example: ΘCB [KR11]
 - OCB3 [KR11] $\equiv \Theta$ CB instantiated with XEX construction
 - Deoxys-I [JNPS16] \equiv Θ CB instantiated with Deoxys-BC design

- TBCs are a popular primitive for mode design
- Typical example: ΘCB [KR11]
 - OCB3 [KR11] \equiv Θ CB instantiated with XEX construction
 - Deoxys-I [JNPS16] $\equiv \Theta$ CB instantiated with Deoxys-BC design
 - One can just as well instantiate it with a rekeying scheme

Instantiation of ΘCB with R3

- Instantiation of ΘCB with R3
- Features:
 - *n*-bit security (in ideal model)
 - ullet $\ell_a + \ell_m + 1$ lightly protected E calls
 - ullet $2(\ell_a+\ell_m+1)$ strongly protected h calls
 - By design easier to protect against side-channel attacks

Application to Authenticated Encryption: Comparison

ΘCB-R3

- *n*-bit security (in ideal model)
- $\ell_a + \ell_m + 1$ lightly protected E calls
- $2(\ell_a + \ell_m + 1)$ strongly protected h calls

Application to Authenticated Encryption: Comparison

ΘCB-R3

- *n*-bit security (in ideal model)
- $\ell_a + \ell_m + 1$ lightly protected E calls
- $2(\ell_a + \ell_m + 1)$ strongly protected h calls

Comparison to OCB3 [KR11]

- n/2-bit security (but in standard model)
- $ullet \ \ell_a + \ell_m + 2$ strongly protected E calls

Application to Authenticated Encryption: Comparison

ΘCB-R3

- *n*-bit security (in ideal model)
- $\ell_a + \ell_m + 1$ lightly protected E calls
- $2(\ell_a + \ell_m + 1)$ strongly protected h calls

Comparison to OCB3 [KR11]

- n/2-bit security (but in standard model)
- $\ell_a + \ell_m + 2$ strongly protected E calls

Comparison to DTE [BKP+17]

- Different goal: nonce-misuse resistance
- $\ell_a + \ell_m + 1$ unprotected E calls (approx., for hashing)
- ullet $2\ell_m$ lightly protected E calls
- ullet 2 strongly protected E calls

Conclusion

Fresh Rekeying Versus Tweak-Rekeyable TBCs

- Two disjoint directions considered same problem
- New fresh rekeying solutions for easier side-channel protection

Conclusion

Fresh Rekeying Versus Tweak-Rekeyable TBCs

- Two disjoint directions considered same problem
- New fresh rekeying solutions for easier side-channel protection

Strength of Subkey Generation Function

- Multiplication is not strong enough [BFG14,BCF+15,GJ16,PM16]
- Rekeying approach of ISAP [DEM+17] appears solid!

Conclusion

Fresh Rekeying Versus Tweak-Rekeyable TBCs

- Two disjoint directions considered same problem
- New fresh rekeying solutions for easier side-channel protection

Strength of Subkey Generation Function

- Multiplication is not strong enough [BFG14,BCF+15,GJ16,PM16]
- Rekeying approach of ISAP [DEM+17] appears solid!

Thank you for your attention!