
Efficient Homomorphic Comparison Methods
with Optimal Complexity

ASIACRYPT 2020
Jung Hee Cheon, Dongwoo Kim and Duhyeong Kim

Seoul National University

This Work
§ Complexity-Optimal Homomorphic Comparison Method for word-wise HEs

Ø Follow-up Study of [CKK+19] (Asiacrypt’19)

ü Quasi-optimal solution for homomorphic comparison

ü Impractical to use (e.g., over 47 minutes for 20-bit integer comparison)

Ø (Optimality) Requires “asymptotically minimal” homomorphic multiplications

Ø (Practicality) Comparable to “bit-wise” homomorphic comparison in amortized time

Ø (Mathematical Perspective) A new framework “composite polynomial approximation” for sign function

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. “Numerical Methods for Comparison on Homomorphically Encrypted Numbers.” ASIACRYPT 2019

Backgrounds

§ Homomorphic Encryption (HE)

Ø Allows any computation on encrypted data “without decryption process”

𝒎

𝑬𝒏𝒄(𝒎) 𝑬𝒏𝒄 𝒇 𝒎
= '𝒇 𝑬𝒏𝒄 𝒎

𝒇(𝒎)𝒇()

(𝒇()

𝑬𝒏𝒄 𝑫𝒆𝒄() 𝑬𝒏𝒄 𝑫𝒆𝒄()

Homomorphic Encryption

Homomorphic Encryption

Training Data
Machine
Learning

Model

𝐴

Prediction

Private data 𝒙

𝑨(𝒙)

Attacker

§ Ex) Privacy-preserving Machine Learning

Homomorphic Encryption

𝑬𝒏𝒄(𝒎)
Homomorphic

Machine
Learning

Model

𝐸𝑛𝑐(𝐴)

Prediction

Private data 𝑬𝒏𝒄(𝒙)

𝑬𝒏𝒄(𝑨 𝒙)

§ Ex) Privacy-preserving Machine Learning

Attacker

Homomorphic Encryption
Q) What are the limitations of applying HE to real-world applications?

Ans) Computational Inefficiency due to restricted basic homomorphic operations

Word-wise Approach Bit-wise Approach

10 -> Enc(10) 10 -> (Enc(1),Enc(0),Enc(1),Enc(0))

Add & Mult easy Add & Mult hard

Comparison hard Comparison easy

BGV, B/FV, CKKS
FHEW, TFHE,

word-wise HE with bit-wise encoding

In this talk, we focus on making up for the weakness of word-wise approach!

§ Imagine that we only have two tools: Addition and Multiplication

§ Then, how we can we evaluate “non-polynomial” functions including comparison?

⟹ Approximately compute via polynomial approximation!

§ Various general Poly. Approx. methods in numerical analysis
Ø Taylor (local), Least square approximation (L2-norm), minimax (L∞-norm), Chebyshev, etc.

§ Due to these well-studied Poly. Approx. methods, one may think we’ve already done (?)
Ø Theoretically, we may say…yes
Ø But in efficiency and practicality, hmm…long way to go!

Polynomial Approximation

§ Limitations of general polynomial approximation methods

Ø Aim to find the relation between degree and error bound

Ø They output “minimal-degree” polynomial within a certain error bound under some error measure
Ø BUT, the number of multiplications (complexity) is also an very important factor, more critical in HE

“Can we find a new polynomial approximation method (for the sign function)
with minimal complexity rather than degree?”

Polynomial Approximation

High-level Idea

High-level Idea [CKK+19, this work]

§ To approximate a non-polynomial function with some “structured” polynomials

Ø An “unstructured” poly 𝐺 requires at least Θ deg 𝐺 multiplications [PS73]

• For |𝑥|, to obtain 𝛼-bit precision output via minimax poly. Approx. over [-1,1], Θ 2!/# multiplications are required

Ø For 𝑭 = 𝒇 ∘ 𝒇 ∘ ⋯∘ 𝒇 for a const-degree 𝑓, then it requires only Θ log deg 𝐹 multiplications

Ø If deg𝐹 = 𝑜(2!"# $), then 𝐹 evaluation requires (asymptotically) less complexity than 𝐺 evaluation.

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. “Numerical Methods for Comparison on Homomorphically Encrypted Numbers.” ASIACRYPT 2019

[PS73] Paterson, Michael S., and Larry J. Stockmeyer. "On the number of nonscalar multiplications necessary to evaluate polynomials." SIAM Journal on
Computing 2.1 (1973): 60-66.

High-level Idea [CKK+19, this work]

The previous work [CKK+19] finds such structured polynomials from the literature of numerical analysis

In this work, we aim to construct a new framework for composite polynomial approximation,

rather than exploiting existing algorithms

Go Into Detail

Previous Work [CKK+19]
§ Main Idea

Ø Composite Polynomial ⟺ “Iterative Algorithm”

Ø Express the comparison function as a rational function:

Comp 𝑎, 𝑏 = <
1 𝑖𝑓 𝑎 > 𝑏
%
&

𝑖𝑓 𝑎 = 𝑏
0 𝑖𝑓 𝑎 < 𝑏

= lim
'→)

*)
*

)+,)*

Ø More specifically, *)*

)+,)*
is evaluated by iterative computations of 𝑎 ← *)

*)+,)
and 𝑏 ← ,)

*)+,)

Goldschmidt’s
iterative algorithm

for “division”
[Gol64]

[Gol64] Goldschmidt, R.E. Applications of division by convergence. Ph.D. thesis, Massachusetts Institute of Technology (1964)

Our Work
§ Key Observation

Ø The previous approach can be interpreted as the following two steps

1. Normalize inputs 𝑎 ← *
*+,

and 𝑏 ← ,
*+,

so that 𝑎 + 𝑏 = 1

2. Iteratively compute a rational function 𝑎 ← 𝑓- 𝑎 = *)

*)+,)
= *)

)+ %.)

Ø Re-interpret: 𝑓-
(') = 𝑓- ∘ 𝑓- ∘ 𝑓- ∘ ⋯ ∘ 𝑓- gets close to 𝜒 +

),)
𝑥 = 2#3 &4.% +%

&
over [0,1] as 𝑑 ← ∞

Our Work
§ The graph represents 𝑓-

(') for 𝑑 = 1,2,3

Our Work
§ Key Observation

Ø The basic function 𝑓 does NOT need to be the rational function 𝑓- 𝑥 = 4)

4)+ %.4) which contains
expensive division operation

Ø Instead, symmetry w.r.t. (1/2,1/2), convexity, and some other things may be enough

“What are the core properties of 𝒇 which makes 𝒇(𝒅) get close to the sign function?”

“Equivalence”: 𝜒 +
),)

= sgn = 𝑐𝑜𝑚𝑝

𝑐𝑜𝑚𝑝 𝑎, 𝑏 =
sgn 𝑎 − 𝑏 + 1

2

Our Work
§ Core properties of 𝒇:

1. 𝑓 −𝑥 = −𝑓(𝑥) (Origin Symmetry)

2. 𝑓 1 = 1 (Convergence to ±1)

3. 𝑓5 𝑥 = 𝑐 1 − 𝑥& 6 for some 𝑐 > 0 (Faster Convergence; Optional)

§ Such 𝑓 is “uniquely” determined for each 𝑛:

𝑓! 𝑥 =$
"#$

!
1
4"
⋅ 2𝑖
𝑖 ⋅ 𝑥 1 − 𝑥% "

• 𝑓& 𝑥 = − &
%𝑥

' + '
%𝑥

• 𝑓% 𝑥 = '
(
𝑥) − &$

(
𝑥' + &)

(
𝑥

Our Work
§ Graphs of 𝑓$

(%) for various 𝑛 and 𝑑

Ø Core properties of 𝒇:

1. 𝑓 −𝑥 = −𝑓(𝑥) (Origin Symmetry)
2. 𝑓 1 = 1 (Convergence to ±1)
3. 𝑓5 𝑥 = 𝑐 1 − 𝑥& 6 for some 𝑐 > 0 (Faster Convergence; Optional)

Ø Such 𝑓 is “uniquely” determined for each 𝑛:

𝑓6 𝑥 =T
78-

6
1
47
⋅ 2𝑖
𝑖 ⋅ 𝑥 1 − 𝑥& 7

• 𝑓& 𝑥 = − &
%𝑥

' + '
%𝑥

• 𝑓% 𝑥 = '
(
𝑥) − &$

(
𝑥' + &)

(
𝑥

Our Work
Theorem 1. If the number of compositions 𝑑 ≥ &

'() **+(+)
⋅ log &

,
+ &
'() $-&

⋅ log 𝛼 + 𝑂 1 ,

then it holds that 𝑓$
% 𝑥 − sgn 𝑥 ≤ 2./ for 𝑥 ∈ −1,−𝜖 ∪ [𝜖, 1].

Our Work
Theorem 1. If the number of compositions 𝑑 ≥ &

'() **+(+)
⋅ log &

,
+ &
'() $-&

⋅ log 𝛼 + 𝑂 1 ,

then it holds that 𝑓$
% 𝑥 − sgn 𝑥 ≤ 2./ for 𝑥 ∈ −1,−𝜖 ∪ [𝜖, 1].

<The goal of the composition>

To put 𝝐, 𝟏 into [𝟏 − 𝟐.𝜶, 𝟏]

(and −𝟏,−𝝐 into [−𝟏,−𝟏 + 𝟐.𝜶])

Our Work
Theorem 1. If the number of compositions 𝑑 ≥ &

'() **+(+)
⋅ log &

,
+ &
'() $-&

⋅ log 𝛼 + 𝑂 1 ,

then it holds that 𝑓$
% 𝑥 − sgn 𝑥 ≤ 2./ for 𝑥 ∈ −1,−𝜖 ∪ [𝜖, 1].

§ Core Property 2 and 3 of 𝑓,
Ø Adequate for the second goal 1 − 𝑐, 1 ⟹ [1 − 2.: , 1]

Ø But, NOT necessary for the first goal 𝜖, 1 ⟹ [1 − 𝑐, 1]

Put 𝝐, 𝟏 into
[𝟏 − 𝒄, 𝟏]

Put 𝟏 − 𝒄, 𝟏 into
[𝟏 − 𝟐,𝜶, 𝟏]

Our Work
§ 𝒈 Acceleration method

Ø Find 𝑔6 optimal to the first goal, and then replace 𝑓6
(') by 𝑓6

(')) ∘ 𝑔6
'+ (𝑥) ≈ sgn(𝑥) over [−1,1]

Ø Replace core property 2 and 3 by a new core property 4 for 𝑔6

Ø 𝑔6 is much steeper than 𝑓6 at zero 𝑔65 0 ≈ 𝑓65 0 & but not flat at ±1

Our Work
§ 𝒈 Acceleration method

Results
§ (Theoretic) New homomorphic comparison algorithms with optimal asymptotic complexity

Parameters Minimax Approx. [CKK+19] Method Our Methods

log(1/𝜖) = Θ(1) Θ(𝛼) Θ(log& 𝛼) 𝚯(𝐥𝐨𝐠𝜶)

log(1/𝜖) = Θ(𝛼) Θ(𝛼 ⋅ 2:/&) Θ(𝛼 ⋅ log 𝛼) 𝚯(𝜶)

log(1/𝜖) = Θ(2:) Θ(𝛼 ⋅ 2&,-+) Θ(𝛼 ⋅ 2:) 𝚯(𝟐𝜶)

Results
§ (Practical) Much faster than the previous [CKK+19] method in practice

• 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits [CKK+19] method Our method 1 Our method 2

8 238 s (3.63 ms)* 59 s (0.90 ms) 31 s (0.47 ms)

12 572 s (8.73 ms)* 93 s (1.42 ms) 47 s (0.72 ms)

16 1429 s (21.8 ms)* 151 s (2.30 ms)* 80 s (1.22 ms)

20 2790 s (42.6 ms)* 285 s (4.35 ms)* 94 s (1.43 ms)*

Implementation based on HEaaN with 𝑁 = 2"# and ℎ = 256

An asterisk(*) means that the HEaaN parameter does not achieve 128-bit security due to large log𝑄 ≥ 1700

Results

4~10 times faster 2~3 times faster

§ (Practical) Much faster than the previous [CKK+19] method in practice

• 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits [CKK+19] method Our method 1 Our method 2

8 238 s (3.63 ms)* 59 s (0.90 ms) 31 s (0.47 ms)

12 572 s (8.73 ms)* 93 s (1.42 ms) 47 s (0.72 ms)

16 1429 s (21.8 ms)* 151 s (2.30 ms)* 80 s (1.22 ms)

20 2790 s (42.6 ms)* 285 s (4.35 ms)* 94 s (1.43 ms)*

Further Works & Open Questions
§ Follow-up study of this work

Ø What is the “best choice” of 𝒏?

ü In terms of computational complexity, 𝑛 = 4 is the best

ü Then how about in terms of the various HE cost models? (Can we classify the HE cost models?)

Ø Proofs for heuristic properties of 𝑔 acceleration methods

§ In general,

Ø Can we design new homomorphic comparison algorithms from outside of polynomial evaluation framework?

Ø Can we construct a new HE scheme which supports add, mult and comparison as basic operations?

