Efficient Homomorphic Comparison Methods
with Optimal Complexity

ASIACRYPT 2020
Jung Hee Cheon, Dongwoo Kim and Duhyeong Kim

Seoul National University

This Work

= Complexity-Optimal Homomorphic Comparison Method for word-wise HEs

» Follow-up Study of [CKK+19] (Asiacrypt’19)

v" Quasi-optimal solution for homomorphic comparison

v" Impractical to use (e.g., over 47 minutes for 20-bit integer comparison)
» (Optimality) Requires “asymptotically minimal” homomorphic multiplications
» (Practicality) Comparable to “bit-wise” homomorphic comparison in amortized time

» (Mathematical Perspective) A new framework “composite polynomial approximation” for sign function

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. “Numerical Methods for Comparison on Homomorphically Encrypted Numbers.” ASIACRYPT 2019

Backgrounds

Homomorphic Encryption

* Homomorphic Encryption (HE)

» Allows any computation on encrypted data “without decryption process”

)

Enc()|Dec() O Enc()|Dec()
~— Enc(f(m))
Enetm) FO) = F(Enc(m))

Homomorphic Encryption

= Ex) Privacy-preserving Machine Learning
!

B .

Homomorphic Encryption

= Ex) Privacy-preserving Machine Learning
2 2) —— Prediction '—

N
Private data Enc(x)

Attacker L.rl.'
::> Enc(4)

B @

Enc(m)
3

&

Enc(A(x))

Homomorphic
Machine

Homomorphic Encryption

Q) What are the limitations of applying HE to real-world applications?

Ans) Computational Inefficiency due to restricted basic homomorphic operations

Word-wise Approach Bit-wise Approach

10 -> Enc(10) 10 -> (Enc(1),Enc(0),Enc(1),Enc(0))
Add & Mult easy Add & Mult hard

Comparison hard Comparison easy

FHEW, TFHE,

BGV, B/FV, CKKS word-wise HE with bit-wise encoding

In this talk, we focus on making up for the weakness of word-wise approach!

Polynomial Approximation

* Imagine that we only have two tools: Addition and Multiplication
= Then, how we can we evaluate “non-polynomial” functions including comparison?

— Approximately compute via polynomial approximation!

= Various general Poly. Approx. methods in numerical analysis
» Taylor (local), Least square approximation (L2-norm), minimax (Leo-norm), Chebyshev, etc.

" Due to these well-studied Poly. Approx. methods, one may think we’ve already done (?)
» Theoretically, we may say...yes

» But in efficiency and practicality, hmm...long way to go!

Polynomial Approximation

= Limitations of general polynomial approximation methods

» Aim to find the relation between degree and error bound

» They output “minimal-degree” polynomial within a certain error bound under some error measure

» BUT, the number of multiplications (complexity) is also an very important factor, more critical in HE

“Can we find a new polynomial approximation method (for the sign function)
with minimal complexity rather than degree?”

High-level Idea

High-leVEI ldea [CKK+19, this work]

= To approximate a non-polynomial function with some “structured” polynomials
» An “unstructured” poly G requires at least @(\/TgG) multiplications [PS73]
* For |x|, to obtain a-bit precision output via minimax poly. Approx. over [-1,1], @(2“/2) multiplications are required
» For F = f o fo--o ffora const-degree f, then it requires only ®(log deg F) multiplications

> IfdegF = o(ZdegG), then F evaluation requires (asymptotically) less complexity than G evaluation.

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. “Numerical Methods for Comparison on Homomorphically Encrypted Numbers.” ASIACRYPT 2019

[PS73] Paterson, Michael S., and Larry J. Stockmeyer. "On the number of nonscalar multiplications necessary to evaluate polynomials." SIAM Journal on
Computing 2.1 (1973): 60-66.

High-leVEI ldea [CKK+19, this work]

The previous work [CKK+19] finds such structured polynomials from the literature of numerical analysis

In this work, we aim to construct a new framework for composite polynomial approximation,

rather than exploiting existing algorithms

Go Into Detail

Previous Work ickx+19)

= Main Idea

» Composite Polynomial & “Iterative Algorithm”
Goldschmidt’s

» Express the comparison function as a rational function: iterative algorithm

, for “division”
1 ifa>b - [Gol64]
1 . . a?
Comp(a,b) =45 ifa=b,= C%l_r)glo 2
0 ifa<b
2d a2 b2

e[a
» More specifically, —5——5 is evaluated by iterative computations of a « and b «
a®”+b? aZ+b? aZ+b?

[Gol64] Goldschmidt, R.E. Applications of division by convergence. Ph.D. thesis, Massachusetts Institute of Technology (1964)

Our Work

= Key Observation

» The previous approach can be interpreted as the following two steps

. b
1. Normalize inputs a « = _andb « ——sothata+b =1
a+b a+b

2 2
2. lteratively compute a rational function a < fy(a) = aZCin = a2+é_a)2

(x) = SEnx-)+1 er [0,1] as d « oo

2

> Re-interpret: fo(d) =foofoofoo o fygetscloseto)((1 OO)

Our Work

" The graph represents fo(d) ford =1,2,3

7

Our Work

= Key Observation

2

» The basic function f does NOT need to be the rational function f,(x) = > which contains

x24+(1—x)
expensive division operation

» Instead, symmetry w.r.t. (1/2,1/2), convexity, and some other things may be enough

“What are the core properties of f which makes f(% get close to the sign function?”

N

) = Sgn = comp

“Equivalence”:)((3 -
2'

sgn(a—b) + 1
2

comp(a,b) =

(U

)

Our Work

= Core properties of f:

1. f(=x) =—f(x) (Origin Symmetry)
2 f()=1 (Convergence to +1)
3. f'(x) =c(1—x?*)"forsomec >0 (Faster Convergence; Optional)

= Such f is “uniquely” determined for each n:

@ = 2 (2 x(1 - 22y
i=0

. - _1.3.3
filx) = =ox7 +x

. =35 10,3, 15
fz(x)—gx SXT X

Our Work

= Graphs of fn(d) for various n and d

A

f1

f2
f3

2,4,6

(b) 9 for d

(a) fnforn=1,2,3

Our Work

Theorem 1. If the number of compositionsd = ‘loga + 0(1),

1 1 1
— log f;,(0) log (Z) t log(n+1)

then it holds that an(d)(x) — sgn(x)” <2 %forx € [-1,—€] U[e1].

Our Work

-loga + 0(1)

log(n+1)

<The goal of the composition>
To put [€,1] into [1 — 27%,1]
(and [—1,—€] into [-1,—1 + 27%])

Our Work

Put [€, 1] into Put [1 — ¢, 1] into
1-¢1 1-27%1
= Core Property 2 and 3 of f, H-ell |]

» Adequate for the second goal [1 — ¢, 1] = [1 — 27%,1]

» But, NOT necessary for the first goal [¢,1] = [1 — ¢, 1]

Our Work

= g Acceleration method

d
f(2)

» Find g,, optimal to the first goal, and then replace fn(d) by f, < o g,(ldl)(x) ~ sgn(x) over [—1,1]

> Replace core property 2 and 3 by a new core property 4 for g,,

> gy is much steeper than f;, at zero (g;,(0) = f,;(0)?) but not flat at +1

Our Work

= g Acceleration method

3
I (5)

.................... 1+ g1 1
: co 3 2
o z | eq®
: — c g3
-1 1

L

a) g, forn=1,2,3 when c=1/4
@) g / (b) f{” and f{* o gi”

Results

" (Theoretic) New homomorphic comparison algorithms with optimal asymptotic complexity

Parameters Minimax Approx. Method Our Methods

log(1/e) = 6(1) 0(Va) 0 (log? @)
log(1/€) = O(a) O a - 2%/?) O(a - loga)

log(1/€) = ©(2%) O(Va - 22 H O(a - 2%)

Results

= (Practical) Much faster than the previous [CKK+19] method in practice

* 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

238 5 (3.63 ms)* 59 s (0.90 ms) 315 (0.47 ms)
12 572 s (8.73 ms)* 93 5 (1.42 ms) 47 s (0.72 ms)
16 1429 s (21.8 ms)* 151 s (2.30 ms)* 805 (1.22 ms)
20 2790 s (42.6 ms)* 285 s (4.35 ms)* 94 s (1.43 ms)*

Implementation based on HEaaN with N = 217 and h = 256

An asterisk(*) means that the HEaaN parameter does not achieve 128-bit security due to large logQ > 1700

Results

= (Practical) Much faster than the previous [CKK+19] method in practice

* 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

238 5 (3.63 ms)* 59 s (0.90 ms) 315 (0.47 ms)

12 572 s (8.73 ms)* 93 5 (1.42 ms) 47 s (0.72 ms)

16 1429 s (21.8 ms)* 151 s (2.30 ms)* 805 (1.22 ms)

20 2790 s (42.6 ms)* 285 s (4.35 ms)* 94 s (1.43 ms)*
4~10 times faster 2~3 times faster

Further Works & Open Questions

* Follow-up study of this work

» What is the “best choice” of n?

v" In terms of computational complexity, n = 4 is the best

2
Y Y4

v Then how about in terms of the various HE cost models? (Can we classify the HE cost models?“)

» Proofs for heuristic properties of g acceleration methods

" In general,
» Can we design new homomorphic comparison algorithms from outside of polynomial evaluation framework?

» Can we construct a new HE scheme which supports add, mult and comparison as basic operations?

