
Public-Key Generation with Verifiable Randomness

Olivier Blazy, Patrick Towa and Damien Vergnaud

1: 2:

3:

* Work done while at IBM Research – Zurich and ENS and PSL Research University

4:

1,*4 2,3

Randomness in Key Generation

2

←$

§ True randomness (if it exists) is expensive

§ [LHABKW12] 0.5% of RSA keys on the internet shared common primes

§ [HDWH12] cause: low-entropy TLS and SSH keys generated at boot time

§ [NSSKNM17] ROCA vulnerability: efficiently recovers (factoring-based)
private keys from public ones – Estonian and Slovakian smartcards compromised

KeyGen←

How to Certify Randomness in Key Generation

Juels and Guajardo, PKC 2002

3

← →

How to Certify Randomness in Key Generation

Goal: certify to the end user that her key was generated with high-entropy randomness

4

← →

How to Certify Randomness in KeyGen – Requirements

1. Alice has high-entropy randomness ⇒ Bob has no info about 𝑠𝑘

2. Alice or Bob has high-entropy randomness ⇒ No adversary (other than Bob)
has more info about 𝑠𝑘 than with KG

3. Bob has high-entropy randomness ⇒ Alice’s computer cannot influence the
generation, no covert channel

5

How to Certify Keys – Requirements

1. Alice or Bob has high-entropy randomness ⇒ Keys indistinguishable from KG

2. Alice has high-entropy randomness ⇒ Bob has no info about 𝑠𝑘

3. Bob has high-entropy randomness ⇒ Alice’s computer cannot influence the
generation, no covert channel

6

ROCA

How to Certify Keys – Requirements

1. Alice or Bob has high-entropy randomness ⇒ Keys indistinguishable from KG

2. Alice has high-entropy randomness ⇒ Bob has no info about 𝑠𝑘

3. Bob has high-entropy randomness ⇒ Alice’s computer cannot influence the
generation, no covert channel

7

With J&G’s protocol, log(𝜆) bit-capacity channels possible

Multi-Sessions with Correlated Randomness

8

§ Not considered in J&G’s model

§ Cause of the vulnerabilities in
[LHABKW12,HDWH12]

A not so Simple Example: Discrete-Log Keys

9

𝐺 = < 𝑔 > of public prime order p
Goal: generate 𝑦 = 𝑔!

𝑥! 𝑥"
𝑥"

𝑥 ← 𝑥! + 𝑥" mod 𝑝
𝑦 ← 𝑔#

← ←

𝑉𝑒𝑟𝑓 𝑥" , 𝑦, 𝜋 = 1?

𝑦, 𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!: 𝑔#! = 𝑦 𝑔$#"

A not so Simple Example: Discrete-Log Keys

10

𝑥! 𝑥"
𝑥"

𝑥 ← 𝑥! + 𝑥" mod 𝑝
𝑦 ← 𝑔#

𝑦, 𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!: 𝑔#! = 𝑦 𝑔$#"

Alice can fix x to the value she wants
⇒ (3) violated

𝑉𝑒𝑟𝑓 𝑥" , 𝑦, 𝜋 = 1?

A not so Simple Example: Discrete-Log Keys

11

𝑥! 𝑥"

𝑥"

𝑥 ← 𝑥! + 𝑥" mod 𝑝
𝑦 ← 𝑔#

𝑦, 𝜋

𝐶 ← 𝐶𝑜𝑚(𝑥!)

𝑉𝑒𝑟𝑓 𝑥" , 𝑦, 𝜋 = 1?

𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!: 𝐶 = 𝐶𝑜𝑚 𝑥! ∧ 𝑔#! = 𝑦 𝑔$#"

A not so Simple Example: Discrete-Log Keys

12

𝑥! 𝑥"

𝑥"

𝑥 ← 𝑥! + 𝑥" mod 𝑝
𝑦 ← 𝑔#

𝑦, 𝜋

With which randomness?
(2) might be violated

𝐶 ← 𝐶𝑜𝑚(𝑥!)

With which randomness?
(2) might be violated

𝑉𝑒𝑟𝑓 𝑥" , 𝑦, 𝜋 = 1?

𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!: 𝐶 = 𝐶𝑜𝑚 𝑥! ∧ 𝑔#! = 𝑦 𝑔$#"

Overlooked in J&G’s protocols

A new Model for Randomness Certification

1313

A new Model for Randomness Certification

1414

A new Model for Randomness Certification

1515

KeyGen

←
$

𝑈

→←

1/2 1/2

?

Communication

A new Model for Randomness Certification

1616

KeyGen

←
$

𝑈

→←

1/2 1/2

?

Halting Attacks still
possible (but unavoidable)

A Protocol for Discrete-Log Keys

17

𝑥! 𝑥"Extract ←
← ←

𝑥!% 𝑟!

𝐺 = < 𝑔 > of public prime order p
Goal: generate 𝑦 = 𝑔!

A Protocol for Discrete-Log Keys

18

𝑥! 𝑥"

𝑥"

𝐶 ← 𝐶𝑜𝑚(𝑥!% ; 𝑟!)

Extract ←
← ←

Extractable

𝑥!% 𝑟!

A Protocol for Discrete-Log Keys

19

𝑥! 𝑥"

𝑥"

𝑥 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑥!% , 𝑥")
𝑦 ← 𝑔#

𝐶 ← 𝐶𝑜𝑚(𝑥!% ; 𝑟!)

Extract ←
← ←

Extractable

𝑥!% 𝑟!

A Protocol for Discrete-Log Keys

20

𝑥! 𝑥"

𝑥"

𝑥 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑥!% , 𝑥")
𝑦 ← 𝑔#

𝑦, 𝜋

𝐶 ← 𝐶𝑜𝑚(𝑥!% ; 𝑟!)

Extract ←
← ←

𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!% , 𝑟!: 𝐶 = 𝐶𝑜𝑚 𝑥!% ; 𝑟! ∧ 𝑦 = 𝑔&–(#)*+,)(#!
,#")

Extractable

𝑥!% 𝑟!

𝑉𝑒𝑟𝑓 𝑥" , 𝐶, 𝑦, 𝜋 = 1?

A Protocol for Discrete-Log Keys

21

𝑥! 𝑥"

𝑥"

𝑥 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑥!% , 𝑥")
𝑦 ← 𝑔#

𝑦, 𝜋

𝐶 ← 𝐶𝑜𝑚(𝑥!% ; 𝑟!)

Extract ←
← ←

𝑥!% 𝑟!

Deterministic extractors for all sources do not exist

𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!% , 𝑟!: 𝐶 = 𝐶𝑜𝑚 𝑥!% ; 𝑟! ∧ 𝑦 = 𝑔&–(#)*+,)(#!
,#")

𝑉𝑒𝑟𝑓 𝑥" , 𝐶, 𝑦, 𝜋 = 1?

A Protocol for Discrete-Log Keys

22

𝑥! 𝑥"

𝑥"

𝑥 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑥!% , 𝑥")
𝑦 ← 𝑔#

𝑦, 𝜋

𝐶 ← 𝐶𝑜𝑚(𝑥!% ; 𝑟!)

Extract ←
← ←

Ideas can be generalized to all probabilistic circuits

𝑥!% 𝑟!

𝜋 ≔ 𝑃𝑟𝑜𝑣𝑒 𝑥!% , 𝑟!: 𝐶 = 𝐶𝑜𝑚 𝑥!% ; 𝑟! ∧ 𝑦 = 𝑔&–(#)*+,)(#!
,#")

𝑉𝑒𝑟𝑓 𝑥" , 𝐶, 𝑦, 𝜋 = 1?

RSA Key Generation [NIST Standard]

§ Choose at random two distinct large primes 𝑝 and 𝑞

§ 𝑁 ← 𝑝𝑞 and 𝜑 𝑁 = (𝑝 − 1)(𝑞 − 1)

§ Choose 2EF < 𝑒 < 2GHF such that gcd 𝑒, 𝜑 𝑁 = 1; 𝑑 ← [𝑒IEmod 𝜑 𝑁]

§ 𝑝𝑘 ← 𝑁, 𝑒 and 𝑠𝑘 ← (𝑁, 𝑑) (or 𝑝, 𝑞, 𝑒)

23

RSA Key Generation [NIST Standard – Interpretation]

§ Choose at random two distinct large primes 𝑝 and 𝑞

§ 𝑁 ← 𝑝𝑞 and 𝜑 𝑁 = (𝑝 − 1)(𝑞 − 1)

§ Choose 2EF < 𝑒 < 2GHF such that gcd 𝑒, 𝜑 𝑁 = 1; 𝑑 ← [𝑒IEmod 𝜑 𝑁]

§ 𝑝𝑘 ← 𝑁, 𝑒 and 𝑠𝑘 ← (𝑝, 𝑞, 𝑒)

24

2"#$; 2"

RSA Key Generation [NIST Standard – Interpretation]

§ Choose at random two distinct large primes 𝑝 and 𝑞

§ 𝑁 ← 𝑝𝑞 and 𝜑 𝑁 = (𝑝 − 1)(𝑞 − 1)

§ Choose 2EF < 𝑒 < 2GHF such that gcd 𝑒, 𝜑 𝑁 = 1; 𝑑 ← [𝑒IEmod 𝜑 𝑁]

§ 𝑝𝑘 ← 𝑁, 𝑒 and 𝑠𝑘 ← (𝑝, 𝑞, 𝑒)

25

𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡 AlgorithmThe first two

Potentially some additional conditions, e.g., safe

Part of 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡

A Protocol for RSA Keys

26

𝑟! 𝑟"

𝑟"

𝐶 ← 𝐶𝑜𝑚(𝑟!%; 𝜌!)

Extract ←
← ←

Extractable

𝑟!% 𝜌!

A Protocol for RSA Keys

27

𝑟! 𝑟"

𝑟"

𝑠 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑟!% , 𝑟")
𝑎0, … , 𝑎1 , … , 𝑎2 ← 𝑃𝑅𝐹 𝑠,⋅

𝐶 ← 𝐶𝑜𝑚(𝑟!%; 𝜌!)

Extract ←
← ←

Extractable

𝑟!% 𝜌!

𝑝 𝑞

First two primes that pass 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡

counter mode

A Protocol for RSA Keys

28

𝑟! 𝑟"

𝑟"

𝑠 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑟!% , 𝑟")
𝑎0, … , 𝑝, … , 𝑞 ← 𝑃𝑅𝐹 𝑠,⋅

𝑁 ← 𝑝𝑞

𝐶 ← 𝐶𝑜𝑚(𝑟!%; 𝜌!)

Extract ←
← ←

Extractable

𝑟!% 𝜌!

𝜋 ← 𝑝𝑟𝑜𝑜𝑓 𝑡ℎ𝑎𝑡 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔
𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑃𝑅𝐹 𝑜𝑛 𝑠𝑒𝑒𝑑 𝑠, 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡,

𝑎𝑛𝑑 𝑎𝑟𝑒 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏

A Protocol for RSA Keys

29

𝑟! 𝑟"

𝑟"

𝑠 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑟!% , 𝑟")
𝑎0, … , 𝑝, … , 𝑞 ← 𝑃𝑅𝐹 𝑠,⋅

𝑁 ← 𝑝𝑞

𝐶 ← 𝐶𝑜𝑚(𝑟!%; 𝜌!)

Extract ←
← ←

Extractable

𝑟!% 𝜌!

𝑁, 𝑒, 𝑎3 341,2 , 𝑖, 𝜋

𝑉𝑒𝑟𝑓 𝑟" , 𝐶, 𝜋, 𝑁, 𝑒 = 1?
𝑓𝑜𝑟 𝑘 ≠ 𝑖, 𝑗, 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡 𝑎3 = 0?

crucial to ensure that 𝑝 and 𝑞
really were the first two

appropriate primes

𝜋 ← 𝑝𝑟𝑜𝑜𝑓 𝑡ℎ𝑎𝑡 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔
𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑃𝑅𝐹 𝑜𝑛 𝑠𝑒𝑒𝑑 𝑠, 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡,

𝑎𝑛𝑑 𝑎𝑟𝑒 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏
+ 𝑎3 341,2 𝑎𝑟𝑒 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑃𝑅𝐹

A Protocol for RSA Keys

30

𝑟! 𝑟"

𝑟"

𝑠 ← 2–𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑟!% , 𝑟")
𝑎0, … , 𝑝, … , 𝑞 ← 𝑃𝑅𝐹 𝑠,⋅

𝑁 ← 𝑝𝑞

𝐶 ← 𝐶𝑜𝑚(𝑟!%; 𝜌!)

Extract ←
← ←

Extractable

𝑟!% 𝜌!

𝑁, 𝑒, 𝑎3 341,2 , 𝑖, 𝜋

require randomness
⇒ 𝑃𝑅𝐹% 𝑜𝑛 𝑠𝑒𝑒𝑑𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚

𝑉𝑒𝑟𝑓 𝑟" , 𝐶, 𝜋, 𝑁, 𝑒 = 1?
𝑓𝑜𝑟 𝑘 ≠ 𝑖, 𝑗, 𝑎3𝑖𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑃𝑅𝐹 𝑜𝑛 𝑠

𝑎𝑛𝑑 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡 𝑎3 = 0?𝜋 ← 𝑝𝑟𝑜𝑜𝑓 𝑡ℎ𝑎𝑡 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔
𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑃𝑅𝐹 𝑜𝑛 𝑠𝑒𝑒𝑑 𝑠, 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠 𝑃𝑟𝑖𝑚𝑒𝑇𝑒𝑠𝑡,

𝑎𝑛𝑑 𝑎𝑟𝑒 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏

A Protocol for RSA Keys – Instantiation

31

𝑟! 𝑟"
𝐶 ← 𝑔&!

"
ℎ'!

Extract ←
← ←

𝑟!% 𝜌!

𝐺 = < 𝑔 > 𝑜𝑟𝑑 𝐺 public and prime

A Protocol for RSA Keys – Instantiation

32

𝑟! 𝑟"
𝐶 ← 𝑔&!

"
ℎ'!

Extract ←
← ←

𝑟!% 𝜌!
𝑟"

𝑠 ← 𝑟!% + 𝐻 𝑟" 𝑚𝑜𝑑 ℓ, with ℓ Sophie-Germain prime s.t. ℓ| 𝑜𝑟𝑑 𝐺 − 1 and 𝑜𝑟𝑑 𝐺 > 2ℓ + 1 &

𝐺 = < 𝑔 >

A Protocol for RSA Keys – Instantiation

33

𝑟! 𝑟"
𝐶 ← 𝑔&!

"
ℎ'!

Extract ←
← ←

𝑟!% 𝜌!

𝐺 = < 𝑔 >

𝑟"

𝑠 ← 𝑟!% + 𝐻 𝑟" 𝑚𝑜𝑑 ℓ,
𝑃𝑅𝐹: Dodis–Yampolskiy in the group 𝑄𝑅&ℓ60 = < 𝑎 >

𝑠, 𝑥 ↦ 𝑎$/(*+!)𝑚𝑜𝑑 ℓ

with ℓ Sophie-Germain prime s.t. ℓ| 𝑜𝑟𝑑 𝐺 − 1 and 𝑜𝑟𝑑 𝐺 > 2ℓ + 1 &

A Protocol for RSA Keys – Instantiation

34

𝑟! 𝑟"
𝐶 ← 𝑔&!

"
ℎ'!

Extract ←
← ←

𝑟!% 𝜌!

𝐺 = < 𝑔 >

𝑟"

𝑠 ← 𝑟!% + 𝐻 𝑟" 𝑚𝑜𝑑 ℓ
𝑃𝑅𝐹: Dodis–Yampolskiy in the group 𝑄𝑅&ℓ60 = < 𝑎 >

𝑠, 𝑥 ↦ 𝑎$/(*+!)𝑚𝑜𝑑 ℓ

In 𝜋, compute 𝑃 ← 𝑔-ℎ&# and 𝑄 ← 𝑔.ℎ&$

A Protocol for RSA Keys – Instantiation

35

𝑟! 𝑟"
𝐶 ← 𝑔&!

"
ℎ'!

Extract ←
← ←

𝑟!% 𝜌!

𝐺 = < 𝑔 >

𝑟"

≈ proving knowledge of 𝑥 s.t. 𝑦 = 𝑔n!

i.e., a “double discrete logarithm”

Double Discrete Logarithm 𝑦 = 𝑔"!

§ Introduced by Stadler at EUROCRYPT’96 for VSS

§ Later used to build GS [CS97], e-cash [CG07], credentials [CGM12]

§ Only method known so far to prove knowledge of DDLogs in ZK had
Ω log 𝑜𝑟𝑑(𝐺) (prover) communication complexity because of {0,1}
challenges

§ Using “Bulletproofs” [BBBPWM18] for arithmetic circuits, our proof has
𝑂(log log 𝑜𝑟𝑑(𝐺)) communication complexity

36

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑥 = #
PQRQS

𝑥R2R ,

𝑎T = '
PQRQS

𝑎U!
T!
= '

PQRQS

𝑎R 𝑚𝑜𝑑 𝑜𝑟𝑑 𝐺 ,

𝑦 = 𝑔∏! W!

37

with 𝑎R ∈ 1, 𝑎U!

with 𝑥R ∈ 0,1

over ℤ (instead of ℤXYZ([))

𝑎T − '
PQRQS

𝑎R = 0

38

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑎T − '
PQRQS

𝑎R

U

+ #
PQRQS

𝑎R − 1 𝑎R − 𝑎U
!

U
= 0

39

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑎T − '
PQRQS

𝑎R

U

+ #
PQRQS

𝑎R − 1 𝑎R − 𝑎U
!

U
= 0

𝑏P ← 𝑎P
𝑏\ ← 𝑏P𝑎\

⋮
𝑏S]\ ← 𝑏S]U𝑎S]\

40

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑏P − 𝑎P U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

𝑎R − 1 𝑎R − 𝑎U
!

U
= 0

𝑏" ← 𝑎"
𝑏# ← 𝑏"𝑎#

⋮
𝑏$%# ← 𝑏$%&𝑎$%#

41

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑏P − 𝑎P U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

𝑎R − 1 𝑎R − 𝑎U
!

U
= 0

𝑢R ← 𝑎R − 1
𝑣R ← 𝑎R − 𝑎U

!

42

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑏P − 𝑎P U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

𝑢R𝑣R U + #
PQRQS

𝑢R − 𝑎R + 1 U + 𝑣R − 𝑎R + 𝑎U
! U

= 0

𝑢R ← 𝑎R − 1
𝑣R ← 𝑎R − 𝑎U

!

43

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑏P − 𝑎P U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

𝑢R𝑣R U + #
PQRQS

𝑢R − 𝑎R + 1 U + 𝑣R − 𝑎R + 𝑎U
! U

= 0

44

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝑏P − 𝑎P U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

𝑢R𝑣R U + #
PQRQS

𝑢R − 𝑎R + 1 U + 𝑣R − 𝑎R + 𝑎U
! U

= 0

45

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

Linear

𝑏P − 𝑎P ∗ 1 U + #
\QRQS]\

𝑏R − 𝑎R𝑏R]\ U + 𝑎T − 𝑎S𝑏S]\ U

+ #
PQRQS

0 − 𝑢R𝑣R U + #
PQRQS

𝑢R − 𝑎R + 1 U + 𝑣R − 𝑎R + 𝑎U
! U

= 0

46

𝐺 = < 𝑔 >, 𝑦 = 𝑔"!

𝒂𝑳 ∘ 𝒂𝑹 = 𝒂𝑶 and 𝑾𝑳𝒂𝑳 +𝑾𝑹𝒂𝑹 +𝑾𝑶𝒂𝑶 = 𝑾𝑽 𝑎T + 𝑪(over ℤopq(r))

Randomness Certification – Open Problems

§ Would it be possible to use Bob’s randomness to amplify Alice’s instead
of strictly requiring either to have high-entropy randomness?

47

Randomness Certification – Open Problems

§ Would it be possible to use Bob’s randomness to amplify Alice’s instead
of strictly requiring either to have high-entropy randomness?

§ Can one devise a more realistic model in which

§ entropy is accumulated,

§ sources are not independent of the extractors? [CDKT19]

48

