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Main Definition and Models



Confidentiality = Indistinguishability

Alice Bob

Eve

Listen Modify

Unsecured channel of communication
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Motivation

Public key encryption allows two parties to communicate securely even when no
prior secret shared key is available to them.

It is extremely useful for establishing secure communications over the Internet:
e.g., the TLS protocol.
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Perfect Correctness

Definition
We say that a public-key encryption (PKE) scheme Π = (KeyGen, Enc, Dec) is
perfectly correct if the following holds:

– for every message M ∈M, for every pair (pk, sk) generated by KeyGen on
input λ, and all possible coin tosses of Enc and Dec, it should hold that
Dec(sk, Enc(pk, M)) = M.

Analogous definition for key encapsulation mechanisms (KEMs).
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Security Games: IND-CPA

Adversary

(pk)

Challenger

(pk, sk)← KeyGen(λ)

pk(M0, M1)

C∗ ← Enc(pk, Mb)
b←$ {0, 1}

Can you guess the bit b?

b′

return [b′ = b]
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Security Games: IND-CCA

Adversary(pk, ODec(sk, ·) ) Challenger

(M0, M1)

C∗ ← Enc(pk, Mb)
b←$ {0, 1}

Can you guess the bit b?

b′

return [b′ = b]
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Adversary Advantage

Definition
The adversary advantage in game x ∈ {IND-CPA,IND-CCA}, is:

Advx(A) =

∣∣∣∣Pr[A wins in the x game]− 1
2

∣∣∣∣ .
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Why CCA Security?

CCA de-facto security standard nowadays; particular important in practice:

• Daniel Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1” [Ble98],

and many follow up works.

Such an attack enables an adversary to completely recover the original message
for any ciphertext of its choice!
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Decryption Error



Imperfect Decryption

Some PKE schemes (especially those post-quantum) do not have perfect
decryption.

When the ability to correctly decrypt valid ciphertexts is dependent on the secret
key, the result of the decryption process can leak information about the secret
key (e.g., [BS20] and [DRV20]).
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Trade-o�s

Decryption error can be naively decreased by increasing the parameters of the
PKE.

• security (e.g., di�erent ways of sampling error in lattice-based PKEs),

• e�ciency,
– size (e.g., public-key, ciphertext),
– runtime,

• decryption error.
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Imperfect Decryption: First Definition [DNR04]

Definition
A PKE Π is DNR-δ(·)-correct if we have that

Pr[Dec(sk, Enc(pk, M)) 6= M] ≤ δ(λ),

where the probability is taken over the choice of keypairs (pk, sk)← KeyGen(λ),
M ∈M, and over the random coins of Enc and Dec.
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Imperfect Decryption: Final Definition [HHK17]

Definition
A PKE Π is δ(·)-correct if

E
[

max
M∈M

Pr[C ← Enc(pk, M) : Dec(sk, C) 6= M]

]
≤ δ(λ),

where the expected value is taken over (pk, sk)← KeyGen(λ).

Taking the maximum over all possible messages we obtain an upper-bound for
the “decryption error” of any single message.
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Our Compiler



Main Idea

• start from a IND-CPA secure PKE with non-negligible correctness error (e.g.,
128 bit security level, error > 2−128):

– easier to construct,
– concrete security of parameters set can be studied in depth,

• reduce the error to a negligible value (i.e., < 2−128),

PKE Compiler PKE′
non-negligible error negligible error

• transform it into an IND-CCA secure PKE/KEM, preserving the negligible
correctness error.
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Direct Product Compiler [DNR04]

• parallel repetition of encryption of the same message under di�erent
randomness reduces decryption error exponentially,

Enc′(pk, M) := (Enc(pk, M; r1), . . . , Enc(pk, M; r`)),

• majority vote is needed to decide which message obtain is the correct one,

• even if the underlying PKE is IND-CCA secure, the so obtained PKE’ is not.
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Correctness Error Direct Product Compiler

δ δ′(2) δ′(3) δ′(4)

2−32 ≈ 2−32 ≈ 2−63 ≈ 2−94

2−64 ≈ 2−64 ≈ 2−127 ≈ 2−190

2−96 ≈ 2−96 ≈ 2−191 ≈ 2−284

Table 1: Estimation of the correctness error for the direct product compilers. δ′(`) denotes
the correctness error for ` ciphertexts.
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FO Transform [FO99]

It is a generic transformation that converts “any” CPA-secure PKE into a
CCA-secure KEM.

rPKE
IND-CPA

dPKE
OW-PCA

KEM
IND-CCA

FO transform

U6⊥T

The transformation is modular [HHK17]: it can be viewed as the composition of
two di�erent ones.

The FO transform requires negligible correctness error of the underlying PKE.
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The Transformation T? (1/2)

We compute ` independent encryptions of the same message M under the same
public key pk using randomness G(M, i), i ∈ [`], where G is a RO (random oracle).

The resulting de-randomized PKE Π′ has then correctness error δ′ := δ`, where ` is
chosen in a way that δ` is negligible.

During the decryption correctness of the message can be checked via the
de-randomization: it allows us to control if the ciphertext was modified and to get
rid of the majority vote.
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The Transformation T? (2/2)

To the resulting PKE Π′ we can then directly apply the transformation U 6⊥ from the
modular analysis of the FO transform [HHK17], to obtain an IND-CCA secure KEM
with negligible correctness error in the (Q)ROM. 18



Runtime and bandwidth overheads

|pk| |C| KeyGen Enc Dec

Cp,y 1 (r) / ` (d) ` 1 (r) / ` (d) ` `

C?
p,d `′ `′ `′ `′ `′

T? 1 `′ 1 `′ `′2 / `′ (⊥)

Table 2: Comparison of the runtime and bandwidth overheads of Cp,y, y ∈ {r, d}, with `
ciphertexts and T? and C?

p,d with `′ ciphertexts such that ` ≥ `′ + 1.
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Evaluation



NIST Post-Quantum Competition

• Important competitions for cryptographic schemes in the past: AES, SHA-1,
SHA-3;

• Now running a Post-Quantum Cryptography Standardization project:
Signatures and PKE/KEMs.
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Question

How does increasing from 1 to ` ciphertexts compare to increasing the parameters
at comparable resulting decryption errors for (existing) round-2 submissions in
the NIST PQC?

N.B. Our work took place before Round-3 started.
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Code-based PKEs/KEMs

22



Code-based Round 2 Submissions

Encryption/KEMs assumption problem

Classic McEliece codes Goppa
NTS-KEM codes Goppa

BIKE codes short Hamming
HQC codes short Hamming

LEDAcrypt codes short Hamming

ROLLO codes low rank
RQC codes low rank
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Classic McEliece codes Goppa
NTS-KEM codes Goppa

BIKE1 codes short Hamming
HQC codes short Hamming

LEDAcrypt codes short Hamming

ROLLO codes low rank
RQC codes low rank

1BIKE is a Round-3 Alternate Candidate.

24



Evaluation (1/2)

KEM δ pk C
∑

KeyGen Encaps Decaps

O[ROLLO-I-L1,5] 2−150 465 2325 2790 0.10 0.02 /0.10 0.26 /1.30

ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53

O[ROLLO-I-L3,4] 2−128 590 2360 2950 0.13 0.02 / 0.08 0.42 /1.68

ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69

O[ROLLO-I-L5,4] 2−168 947 7576 8523 0.20 0.03 /0.12 0.78 /3.12

ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84

O[BIKE-2-L1,3] 2−147 10163 30489 40652 4.79 0.14 /0.42 3.29 /9.88

BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12

Table 3: Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where O denotes the
transformed scheme. Runtimes are taken from the optimized implementations, if available, and are only
intra-scheme comparable.
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Lattice-based PKEs/KEMs
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Round 2 Submissions (2/2)

Encryption/KEMs assumption problem

Crystals-Kyber lattice MLWE
Saber lattice MLWR

FrodoKEM lattice LWE
Round 5 lattice LWR

LAC lattice RLWE
NewHope lattice RLWE

Three Bears lattice IMLWE

NTRU lattice NTRU
NTRUprime lattice NTRU
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Round 2 Submissions (2/2)

Encryption/KEMs assumption problem

Crystals-Kyber lattice MLWE
Saber lattice MLWR

FrodoKEM2 lattice LWE
Round 5 lattice LWR

LAC lattice RLWE
NewHope lattice RLWE

Three Bears lattice IMLWE

NTRU lattice NTRU
NTRUprime lattice NTRU
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Evaluation (2/2)

KEM δ pk C
∑

KeyGen Encaps Decaps

O[R5N1-3-PKE-cpa,2] 2−130 8834 17732 26566 6.69 10.10 /20.20 10.38 /20.75

R5N1-3-KEM-cca 2−144 9660 9732 19392 6.78 10.20 10.60

O[FrodoCCS-Rec.,4] 2−155 11280 45152 56432 2.94 3.48/13.94 10.79/43.16
FrodoKEM-640-AES 2−138 9616 9720 19336 1.38 1.86 1.75

Table 4: Sizes (in bytes) and runtimes, where O denotes the transformed scheme. FrodoCCS refers to the
FrodoKEM version precedent to the NIST competition. Runtimes are taken from the optimized implementations
if available.
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Further Results & Conclusions



Further Results

Bloom Filter KEMs:

• recent primitive proposed by Derler et al. [Der+18],
• building block to construct fully forward-secret 0-RTT key exchange protocols

[Gün+17],
• required perfect decryption of underlying building block (hinders

post-quantum instantiations).

We extended the work generically and showed that one can construct BFKEMs
from any IBE and even base it upon IBEs with a (non-)negligible correctness error:

• first post-quantum CCA-secure BFKEM.
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Conclusions

– generic way to deal with the error from weaker schemes (i.e., IND-CPA secure
ones with non-negligible error) which are easier to design,

– all involved algorithms are easily parallelizable,

– our approach performs well in context of code-based schemes but gives less
advantage for lattice-based ones.

– first post-quantum CCA-secure Bloom Filter KEM
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Open Questions

– extending analysis to other constructions?

– code- VS lattice-based schemes: why the compiler performs so di�erently?
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Thank you for your attention!
(full version of the Asiacrypt’20 paper to appear soon on ePrint)

Supported by:
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