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Background

Algebraically simple designs are becoming increasingly popular
m  Proof systems like SNARKs, STARKSs, ...
Certain metrics are more important than others

— Plain efficiency
+ Algebraic representation of the construction

+ Number of multiplications (also in e.g. MPC)
MiMC [2] a benchmark since 2016 in some of these settings

®  And basis for follow-up designs (e.g., GMiMC [1] and HadesMiMC [5])

22



Summary of the Attacks

Type n Rounds Time Data
SK 129 80 9128 128
SK n ﬂog3(2”*1 _ ]_)—| —1 on—1 on—1
KK 129 160 (~ 2 x full) - 2128
KK n  2-[logy(2"*—1)] -2 _ on—1
KR 129 82 (full) 9122.64 9128
KR 255 161 (full) 246.67 9254
KR n [n-logy(2)] (full) < 27+t 2n-icC
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Overview

= Specification of the MiMC block cipher

m  Round function
= Number of rounds

m  Degree of the round function
= Distinguishers for MiMC
= Key-Recovery Attack on MiMC

= Summary and Future Work
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Specification of MiMC
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MiMC - Specification

MiMC works over I, or F,»
m  Attack works over Fn

Simple construction:

kdc kdc_;

X3 L ... L

Round function in round i:

X3

Pe—x

R,‘(X) = (X + k+ C,')3
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MiMC - Specification cont.

= Every round key k the same (no key schedule)
= Round constants ¢; chosen randomly from FF,»
= nisoddto achieve a permutation

=  How many rounds are secure?

= Approach by the designers

m  Best known non-random property as reference, add one more round

m = [n/log,(3)] rounds (for example, 82 rounds for n = 129)

= Due to this new result, a few more rounds are needed



MiMC - Round Function Degree

Word-level degree of round function is 3

= Upper bound for degree of whole construction is 3" after r rounds
=  Complexity of factorization, interpolation, ...

m  Number of rounds chosen w.r.t. this analysis
Bit-level degree (algebraic degree) of round function is hw(3) = 2

= Upper bound for degree of whole construction is 2" after r rounds
= Forexample, 28 > 128 forr = 82andn = 129

= Most likely, security is easily reached here...
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Distinguishers for MiMC
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Higher-Order Differentials [7, 6]

= Exploit low algebraic degrees
= Distinguishers if this degree is sufficiently low

»  Algebraic degree of f(+) is d, vector space V & c of dimension § + 1:

P fx)=o0

XeEV®Oc
m  Results in a zero-sum distinguisher
= What do we need for protection?

= Reach max. algebraic degree (n — 1 for permutation with block size n)
m  Vector space needs then dimension n (i.e., full space)
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Algebraic Degree of Key-Alternating Ciphers

Consider a key-alternating cipher £} : oo — Fyn
E(x) ==k ®R(---R(ky ®R(ko ®x))--+)

Each round function R(+) has degree d

We want to reach algebraic degreen — 1

Focus on the smallest word-level degree d with hw(d) = n — 1
n d=2"1-1

When does a monomial of degree > d appear?

= Forexample,x? ~!in the univariate description of MiMC



Algebraic Degree of Key-Alternating Ciphers cont.

= To make such a monomial appear, we need
d>2""1-1

= Thisimpliesr > [log, (2" — 1)]
»  Ford = 3, thisis very close to the number of rounds of MiMC
=  |ndeed, it’s at most 2 off

— Growth is linear in the number of rounds
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Algebraic Degree Growth - Concrete Example MiMC
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Higher-Order (Secret-Key) Distinguisher

= Following the previous results:

= Higher-order distinguisher on [log;(2"~! — 1)] — 1 rounds

= Number of rounds not covered by distinguisher
1< [n-logs(2)] — ([logs(2" " —1)] 1) <2
= Examples for various block sizes:

m Distinguisher covers r — 1 rounds forn € {33,63,255}
m  Distinguisher covers r — 2 rounds forn € {31,65,129}
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Known-Key Distinguisher

= Attacker knows the key

= Discover property that holds with a probability higher than that for an ideal
permutation

m  Find set of inputs and outputs whose sums are equal to zero
m  Exploit the inside-out approach

—(r ec— ) renc —
D R =W =0 £ vav 0= @ RN w)

weVov weVov

Zero sum

-~

Zero sum

= We know R~! ~ full MiMC, but what about R—(raec=1)?
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Known-Key Distinguisher cont.

Proposition (Corollary 3 of [3])

Let F be a permutation of F4. The algebraic degree of the inverse F~tisn — 1
if and only if the algebraic degree of Fisn — 1.

If we use a subspace of dimension n — 1, the number of rounds we can
distinguish is the same for MiMC and MiMC~!!

= Rl ~ full MiMC and R~ (aee=1) = full MiMC

= Known-key zero-sum distinguisher on almost double the number of rounds
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Key-Recovery Attack on MiMC
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Ingredients

= Distinguisher with dimension n — 1 works in both directions
= Secret-key distinguisher on almost the full round number

m  Usually exactly what we need for an attack....
= Some major problems here

= We need a high data complexity
m  The final subkey has a size of n bits
m  Full diffusion at bit level, high-degree inverse — guessing not an option

® Interpolation like [4]? Many monomials, more data — not possible
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Ingredients cont.

How to break the final round?



Key-Recovery Attack

= Both encryption function and decryption function reach maximum degree
onlyin last 1 or 2 rounds

= Can we build an efficient equation system for the remaining few rounds?
m  Encryption function has much smaller degree (cheaper to evaluate)

Ri(x) = (x + k)® = x* + x*k + xk* + k>  (over Fp)

®  Request plaintexts (chosen ciphertexts)
= “Fillin” and sum over the values of R;(x) with each received plaintext x

= Solve the remaining univariate polynomial in k
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Key-Recovery Attack cont.

= Generate symbolic expression:

Ri(x, k) = (x + k)® = x> + X’k + xk* + k®

= Request texts, compute values, start solving:

{MIMC(w) [ w € Fpri} % 0= () R

Wern 1

Plaintexts requested by oracle

Higher-order distinguisher
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Key-Recovery Attack Complexity

= Complexity for computing (x + k) = x* + x?*k + xk* + k3

= 2" multiplications for x* (squarings are linear)
= 2714 1squarings for x* and final x?

= 2"+ 1n-bit XOR additions for x, x3, and final representation

= Complexity of solving F(K) = K*> - 2, & K - &2, ® P for K is negligible
m &, are the sums computed before

= Advantage w.r.t. exhaustive search is = log,(n)

= Memory costis negligible
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Key-Recovery Attack Impact

= Verified practically on toy versions?

= Only 1 round for solving step in tested versions

®  Analysis and implementation also cover the case of two rounds

m  New recommendation for number of rounds of MiMC

m  Based on number of multiplications necessary for attack and MiMC

'https://github.com/IAIK/mimc-analysis
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https://github.com/IAIK/mimc-analysis

New Recommendation for Number of Rounds

= Assume [nlog;(2)] — 1 rounds can be covered by zero sum

= Cost dominated by number of operations needed to compute F(K)
= Around ((3"} — 1)/2) - 2"~! multiplications required

= [n-log;(2)] multiplications for MiMC encryption

= Number of extra rounds p has to satisfy

(371 =1)-2" >2" ([nlogs(2)] + p)

= For example, 87 rounds for n = 129 (instead of 82)
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Key-Recovery Attack Generalization

= Straight-forward generalization from FF to F*
= Final solving step with Grobner basis

m  Multivariate system of equations
= Complete definition available in full paper

m  Pseudo code

= Complexity estimation
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Summary and Future Work

= New bound for degree growth of key-alternating ciphers
= First key-recovery attack on full MiMC over FF,»
= Complexity high, but strictly below exhaustive search
= New attack approach
= Applicable to other low-degree constructions?
= Better analysis of inverse degree

m  Possible to reduce data complexity?
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Questions
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