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Background

Algebraically simple designs are becoming increasingly popular

Proof systems like SNARKs, STARKs, . . .

Certain metrics are more important than others

− Plain e�iciency

+ Algebraic representation of the construction

+ Number of multiplications (also in e.g. MPC)

MiMC [2] a benchmark since 2016 in some of these settings

And basis for follow-up designs (e.g., GMiMC [1] and HadesMiMC [5])
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Summary of the Attacks

Type n Rounds Time Data
SK 129 80 2128 2128
SK n dlog3(2n−1 − 1)e − 1 2n−1 2n−1

KK 129 160 (≈ 2 × full) – 2128
KK n 2 · dlog3(2n−1 − 1)e − 2 – 2n−1

KR 129 82 (full) 2122.64 2128
KR 255 161 (full) 2246.67 2254

KR n dn · log3(2)e (full) ≤ 2n−log2(n)+1 2n−1 CC
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Specification of MiMC
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MiMC – Specification

MiMC works over Fp or F2n

Attack works over F2n

Simple construction:

X3 X3 X3. . .x y

k k ⊕ c1 k ⊕ cr−1 k

Round function in round i:

Ri(x) = (x + k + ci)3
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MiMC – Specification cont.

Every round key k the same (no key schedule)

Round constants ci chosen randomly from F2n

n is odd to achieve a permutation

Howmany rounds are secure?

Approach by the designers

Best known non-random property as reference, add onemore round

r = dn/ log2(3)e rounds (for example, 82 rounds for n = 129)

Due to this new result, a fewmore rounds are needed
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MiMC – Round Function Degree

Word-level degree of round function is 3

Upper bound for degree of whole construction is 3r a�er r rounds

Complexity of factorization, interpolation, . . .

Number of rounds chosen w.r.t. this analysis

Bit-level degree (algebraic degree) of round function is hw(3) = 2

Upper bound for degree of whole construction is 2r a�er r rounds

For example, 282 � 128 for r = 82 and n = 129

Most likely, security is easily reached here. . .
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Distinguishers for MiMC
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Higher-Order Di�erentials [7, 6]

Exploit low algebraic degrees

Distinguishers if this degree is su�iciently low

Algebraic degree of f (·) is δ, vector space V ⊕ c of dimension δ + 1:⊕
x∈V⊕c

f (x) = 0

Results in a zero-sum distinguisher

What do we need for protection?

Reachmax. algebraic degree (n− 1 for permutation with block size n)
Vector space needs then dimension n (i.e., full space)
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Algebraic Degree of Key-Alternating Ciphers

Consider a key-alternating cipher Erk : F2n → F2n

Erk(x) := kr ⊕ R(· · · R(k1 ⊕ R(k0 ⊕ x)) · · · )

Each round function R(·) has degree d

Wewant to reach algebraic degree n− 1

Focus on the smallest word-level degree d with hw(d) = n− 1

d = 2n−1 − 1

When does a monomial of degree≥ d appear?

For example, x2n−1−1 in the univariate description of MiMC
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Algebraic Degree of Key-Alternating Ciphers cont.

Tomake such amonomial appear, we need

dr ≥ 2n−1 − 1

This implies r ≥ dlogd(2n−1 − 1)e

For d = 3, this is very close to the number of rounds of MiMC

Indeed, it’s at most 2 o�

→ Growth is linear in the number of rounds
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Algebraic Degree Growth – Concrete Example MiMC
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Higher-Order (Secret-Key) Distinguisher

Following the previous results:

Higher-order distinguisher on dlog3(2n−1 − 1)e − 1 rounds
Number of rounds not covered by distinguisher

1 ≤ dn · log3(2)e −
(⌈
log3(2

n−1 − 1)
⌉
− 1
)
≤ 2

Examples for various block sizes:

Distinguisher covers r − 1 rounds for n ∈ {33, 63, 255}
Distinguisher covers r − 2 rounds for n ∈ {31, 65, 129}
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Known-Key Distinguisher

Attacker knows the key

Discover property that holds with a probability higher than that for an ideal
permutation

Find set of inputs and outputs whose sums are equal to zero

Exploit the inside-out approach⊕
w∈V⊕v

R−(rdec−1)(w) = 0︸ ︷︷ ︸
Zero sum

R−(rdec−1)

←−−−−− V ⊕ v Rrenc−1

−−−→ 0 =
⊕
w∈V⊕v

Rrenc−1(w)︸ ︷︷ ︸
Zero sum

We know Rrenc−1 ≈ full MiMC, but what about R−(rdec−1)?
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Known-Key Distinguisher cont.

Proposition (Corollary 3 of [3])

Let F be a permutation of Fn2. The algebraic degree of the inverse F−1 is n− 1
if and only if the algebraic degree of F is n− 1.

If we use a subspace of dimension n− 1, the number of rounds we can
distinguish is the same for MiMC and MiMC−1!

Rrenc−1 ≈ full MiMC and R−(rdec−1) ≈ full MiMC−1

Known-key zero-sum distinguisher on almost double the number of rounds

13 / 22



Key-Recovery Attack on MiMC
¤



Ingredients

Distinguisher with dimension n− 1 works in both directions

Secret-key distinguisher on almost the full round number

Usually exactly what we need for an attack . . .

Somemajor problems here

We need a high data complexity

The final subkey has a size of n bits

Full di�usion at bit level, high-degree inverse→ guessing not an option

Interpolation like [4]? Many monomials, more data→ not possible
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Ingredients cont.

How to break the final round?
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Key-Recovery Attack

Both encryption function and decryption function reachmaximum degree
only in last 1 or 2 rounds

Can we build an e�icient equation system for the remaining few rounds?

Encryption function has much smaller degree (cheaper to evaluate)

R1(x) = (x + k)3 = x3 + x2k + xk2 + k3 (over F2n)

Request plaintexts (chosen ciphertexts)

“Fill in” and sum over the values of R1(x)with each received plaintext x

Solve the remaining univariate polynomial in k
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Key-Recovery Attack cont.

Generate symbolic expression:

R1(x, k) = (x + k)3 = x3 + x2k + xk2 + k3

Request texts, compute values, start solving:

{MiMC−1(w) | w ∈ F2n−1}︸ ︷︷ ︸
Plaintexts requested by oracle

Key solving−−−−−−→ 0 =
⊕

w∈F2n−1

R−(r−1)(w)

︸ ︷︷ ︸
Higher-order distinguisher
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Key-Recovery Attack Complexity

Complexity for computing (x + k)3 = x3 + x2k + xk2 + k3

2n−1multiplications for x3 (squarings are linear)

2n−1 + 1 squarings for x3 and final x2

2n + 1 n-bit XOR additions for x, x3, and final representation

Complexity of solving F(K) = K2 ·P1 ⊕ K ·P2 ⊕P3 for K is negligible

Pi are the sums computed before

Advantage w.r.t. exhaustive search is≈ log2(n)

Memory cost is negligible
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Key-Recovery Attack Impact

Verified practically on toy versions1

Only 1 round for solving step in tested versions

Analysis and implementation also cover the case of two rounds

New recommendation for number of rounds of MiMC

Based on number of multiplications necessary for attack and MiMC

1https://github.com/IAIK/mimc-analysis
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New Recommendation for Number of Rounds

Assume dn log3(2)e − 1 rounds can be covered by zero sum

Cost dominated by number of operations needed to compute F(K)

Around ((3KR − 1)/2) · 2n−1multiplications required

dn · log3(2)emultiplications for MiMC encryption

Number of extra rounds ρ has to satisfy

(3ρ+1 − 1) · 2n−2 ≥ 2n · (dn · log3(2)e+ ρ)

For example, 87 rounds for n = 129 (instead of 82)
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Key-Recovery Attack Generalization

Straight-forward generalization from F to Ft

Final solving step with Gröbner basis

Multivariate system of equations

Complete definition available in full paper

Pseudo code

Complexity estimation
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Summary and Future Work

New bound for degree growth of key-alternating ciphers

First key-recovery attack on full MiMC over F2n

Complexity high, but strictly below exhaustive search

New attack approach

Applicable to other low-degree constructions?

Better analysis of inverse degree

Possible to reduce data complexity?
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Questions
?
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