Cryptanalysis of Masked Ciphers A not so Random Idea

Tim Beyne, **Siemen Dhooghe**, Zhenda Zhang imec-COSIC, ESAT, KU Leuven, Belgium

The Work in a Nutshell

- Side-channel analysis, masking, and probing security
- A security analysis based on cryptanalysis
 - Bounded-query security
 - Higher-order threshold implementations
 - The analysis includes the randomness generation
- Importance of cryptanalytic properties
 - Linear activity patterns caused by diffusion
 - Nonlinearity of the masked S-box

Threshold Implementations

- Correctness
- Non-completeness
- Uniformity

Glitch-Extended Probing

- Using a probe an adversary views the inputs of a function
- The number of probes is called the order of security

Bounded-Query Security

Moving from perfect security to bounded-query security

Figure 2. The privacy model for t-threshold-probing security for a challenger C, an adversary A, a left-right oracle \mathcal{O}^b , two inputs k_0, k_1 , a set of probes \mathcal{P} , and a set of probed wire values $(v_1^b, ..., v_t^b)$ of the circuit $C(k_b)$.

5

Bounding the Advantage (Simplified)

- The advantage is bounded in terms of the Shannon entropy of the probed values
- The entropy of probed values can be bounded in terms of the nontrivial Fourier coefficients of its distribution
- The bounding of these Fourier coefficients is done using standard linear cryptanalysis

Case Study: Second-Order Masked LED

 $\times 4$

- Sharing requires:
 - 664 bits of randomness
 - 7 shares per state bit
 - 3 shares per key bit

Security Analysis in Three Steps

- S-box level: probing security
- Nearby rounds: zero-correlation
- Distant rounds: small absolute correlation

S-Box Level: Threshold Implementations

- $\overline{S}_1, \overline{S}_2$ are
 - Correct
 - Second-order non-complete
 - Uniform

S-Box Level: Static Randomness

- Randomness \bar{r} is added in the shared S-box
- This randomness is re-used every round, every cell

Nearby Rounds

Nearby Rounds

- Zero-correlation linear approximation(s):
 - Any pair of measurements from probes which are at most three rounds apart is uniformly distributed

Distant Rounds (Wide-Trail Strategy)

• LED activity pattern

- Bounds on (absolute) correlation of linear approximations/trails:
 - Probes at least four rounds apart activate at least 24 shared S-boxes
 - Each shared S-box has maximum absolute correlation 2^{-3}
 - The distribution of any pair of measurements from probes which are at least four rounds apart is close to uniform

Security of Masked LED

Security Claim 1. For the masked LED described in this section, the following bound on the advantage of the adversary (assuming piling-up) in the probing model is claimed:

$$\operatorname{Adv}_{2-\mathsf{thr}}(\mathcal{A}) \leq \sqrt{\frac{q}{2^{120}}}.$$

To Conclude

- Linear cryptanalysis can be used to analyze the probing-security of masked primitives
- Fresh randomness is not needed for second-order security
- Some symmetric primitives are easier to secure than others
 - AES S-box has no known uniform sharing
 - PRESENT has slow diffusion
- Future work:
 - Find cryptanalytically good sharings
 - Application to other security models
 - Investigate the effect of RNGs in the design