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Pseudorandom Functions

” - PRF(x)
This PRF has to be ruly random function
computed efficiently X H(x)
X

Running in polynomial-
time
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Indistinguishable from truly random
function under black box access
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PRF in quantum world

e PRF analogues in quantum
world (two definitions)

PRF(x) o
This PRF has to be \\ Truly random function
m icien X H(x)
e Post-quantum PREF: computed etficiently /
e guantum security for ‘ A pof;:f;:r‘:jj;me

classical queries Distinguisher

Indistinguishable from truly random
function under black box access

e Quantum-secure PRF
(QPRF):
O(-)
e the distinguisher can send Z | x) | O(x))
guantum queries
D 1x)10)
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Applications of QPRF

e Quantum money
e Backed by no-cloning theorem thus impossible to forge
e Intrinsically ideal for banknotes

e Pseudorandom guantum states

e Quantum secure MACs



Related works

e \We focus on quantum-secure PRF (even if quantum queries are
allowed) in this work

e Zhandry investigated these notions heavily (eg. FOCS’12,
CRYPTO’12)

e Separation result: if secure PRFs exist, then there are standard-
secure (post-guantum) PRFs that are not QPRFs.



Motivation

Zhandry gave the separation result and proved that many
constructions of post-quantum PRFs are also quantum-
secure, though with completely different analysis.

e These proofs are complicated and not tight

Our goal: A generic construction, a simple analysis, and a
tight proof?

Inspiration: domain extension techniques

Challenge: it’s not trivial to extend the domain (even for truly
random functions)



Challenge

e |tis challenging to extend truly random function’s domain

e Suppose we have a truly random function

f:{0,1}* - {0,1}*

e We would like to extend it by using a random linear
function (or universal hash function)

H: {0,1}* = {0,1}"in this way:

* /11 x = f(H(x))



Challenge (cont.)

e This Is statistically indistinguishable from a truly random
function for classical distinguisher with oracle access

e However, Boneh and Lipton in [BL95] suggested that via
superposition gueries, one can find the period of a function

efficiently

e |n this case, one can find the kernel of our linear function
H( - ) thus makes f’ distinguishable



Results

e Explore a different road to construct QPRF which is based
on the framework of Do6ttling and Schroder in CRYPTO’15
and have the following result:

e Given any post-quantum PRF with small-domain, our
construction extends it to a full-fledged QPRF

* The key ingredient is a highly unbalanced bipartite expander
[GUVQO9]

e |t crucially allows us to reduce the quantum hardness of
our PRF to the classical (post-quantum) hardness of a
small-domain PRF
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Results (cont.)

Our construction preserves the key-homomorphic property of
underlying PRF, giving a quantum key-homomorphic PRF for
free

Key-homomorphic PRFs were introduced by Boneh et al. In a
nutshell, for key-homomorphic PRFs the key-space is a group

and it holds for all x that
PRF(Kl -+ Kz, X) = PRF(Kl,x) -+ PRF(Kz, X).

Key-homomorphic PRFs have applications in the context of
proxy-re-encryption and related key security.

It give rise to a very natural protocol for a distributed PRF



Outline

e There are two steps, a domain extension step and a
combiner step

e The domain extension step takes a small domain PRF with

domain size poly(q) and constructs from it a g-bounded
PRF on a large domain.

e A PRF is called g-bounded if security is only guaranteed
for adversaries which make at most g queries.

e The combiner step, combines a small number of bounded
PRFs which have the same domain.
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Combiner Step

e The key idea here is to set the bounds in an exponentially
Increasing way.

o Specifically, if Fq(K , X) are g-bounded PRFs, we combine

them into a function F' via

[
. F(K.x) = @ Fru(Ky x), where K = (K, ..., Ky).
i=1
where 1 will be chosen slightly super-logaritnmic in the
security parameter A.

13



Combiner Step (cont.)

o We claim that if F (K, x) is a g-bounded QPRF as long as
g is polynomial, then F(K, x) is an unbounded QPRF.

e The security derives from the following fact: for an efficient

(BQP) distinguisher, there is an upper bound g’ on the
number of superposition queries it can make. Thus we are

able to choose i’ = [log g’| < 1 to reduce the security of
F to the i’-th bounded PRF F,,.
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Domain Extension Step

e As mentioned, domain extension is challenging

e As shown before, statistically secure against classical
adversary is not sufficient

e We need a perfectly secure domain extension step

e |f so, we can use the Zhandry’s lemma [FOCS’12] which

states that any classical 2g-wise-independent function is
identically distributed to a uniform function from the view of

a g-bounded quantum adversary.
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Generic Construction
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A bipartite graph I j o o 5
where the set of left vertices
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Extension Techniques
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()-unique

e Moreover, we require an additional unique neighbour
property for unbalanced bipartite expander:

e For any subset S C |N] of left-vertices not larger than a

(polynomial) bound (), there exists a vertex v in

['(S) C [L] (the neighbourhood of S) which has a unique

neighbour in S. ®

A construction of > ‘:>(*. L(5)
e A construction o Y
such graph is given S|<Q® \q

in [GUV09] ° "o
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Extend a random function

 First, we show how to extend a small-domain truly random function
to O-wise-independent function (where Q will be selected later)

o ()-wise-independent: for any pairwise distinct xy, ..., x, € [/V]]

that g(x,), ..., g(xy) are independent and uniformly random

e With a O-unique expander I, for a random function f defined on
the small domain [L], we extend it to a J-wise-independent
function g defined on the large domain |V ]:

e 8(x) = Bipp [(1'(x,))), where I'(x, j) is the j-th neighbour of x.
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Sketch of the Proof,

By the J-unique property of 1, for any subset
§'C S = {x,....,xp}, there exist a vertex v' € I'(§’) having a

unique neighbour x;, € §°

Thus there is an index j° € [D] such that f(I'(x;, j)) only appears
in g(x;/) but not other g(x;)

Given f(1'(x;, J') is uniformly random and independent of other
g2(x), sois g(x;)

Therefore we can recursively repeat to show every g(x;) is uniformly
random and independent
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Replace it with a PRF

* Then, we replace the random function with a small-domain PRF
and choose O = 2gq.

e We claim that if it is a post-quantum PRF with (polynomially-
sized) domain | L], then it holds that

o (K, x) = Dicip PRF(K,I'(x,/)) is indistinguishable from the

2g-wise-independent function g(x) = D, f(I'(x,j)) forag
-bounded BQP quantum adversary

e Finally, by using Zhandry’s lemma, it directly implies the 2¢g
-uniform function (K, x) is indeed a g-bounded QPRF
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Sketch of the Proof,

Suppose a g-bounded BQP adversary &f can distinguish between
F(K, x) and g(x), we will show another &/’ can break the post-quantum
security of underlying PRF

Let the adversary &/’ classically query the oracle (O (on a small-domain)
to build its function table, then locally computes a quantum circuit U 5

suchthat Us | x,y) = | x,y + O(x))

Now, &/ gives &/ superposition access to its simulated oracle
O':|x,y) = Ugy|x,y) and outputs what &/ outputs

Clearly, if & can distinguish F(K, x) from g(x), then &/’ can distinguish
PRF from a truly random function
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Summary

» Generic and simple construction
* No need to go through GGM construction

» Optimally tight proof
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Thank you!



