A Combinatorial Approach to Quantum Random Function

Nico Döttling Giulio Malavolta Sihang Pu

Overview

- Background and motivations
- Challenges
- Results
- Construction
- Conclusion

Pseudorandom Functions

This PRF has to be computed efficiently

PRF(x)

Χ

Indistinguishable from truly random function under black box access

Running in polynomialtime

Distinguisher

H(x)

X

PRF in quantum world

- PRF analogues in quantum world (two definitions)
 - Post-quantum PRF:
 - quantum security for classical queries
 - Quantum-secure PRF (QPRF):
 - the distinguisher can send quantum queries

Applications of QPRF

- Quantum money
 - Backed by no-cloning theorem thus impossible to forge
 - Intrinsically ideal for banknotes \bullet
- Pseudorandom quantum states
- Quantum secure MACs

Related works

- allowed) in this work
- Zhandry investigated these notions heavily (eg. FOCS'12, CRYPTO'12)
 - secure (post-quantum) PRFs that are not QPRFs.

• We focus on quantum-secure PRF (even if quantum queries are

• Separation result: if secure PRFs exist, then there are standard-

Motivation

- Zhandry gave the separation result and proved that many constructions of post-quantum PRFs are also quantum-secure, though with completely different analysis.
 - These proofs are complicated and not tight
- Our goal: A generic construction, a simple analysis, and a tight proof?
- Inspiration: domain extension techniques
- Challenge: it's not trivial to extend the domain (even for truly random functions)

Challenge

- It is challenging to extend truly random function's domain
- Suppose we have a truly random function $f: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$
- We would like to extend it by using a random linear function (or universal hash function) $H: \{0,1\}^{2\lambda} \rightarrow \{0,1\}^{\lambda}$ in this way:

•
$$f': x \to f(H(x))$$

Challenge (cont.)

- This is statistically indistinguishable from a truly random function for classical distinguisher with oracle access
- However, Boneh and Lipton in [BL95] suggested that via superposition queries, one can find the period of a function efficiently
- In this case, one can find the kernel of our linear function $H(\,\cdot\,)$ thus makes f' distinguishable

Results

- Explore a different road to construct QPRF which is based on the framework of Döttling and Schröder in CRYPTO'15 and have the following result:
 - Given any post-quantum PRF with small-domain, our construction extends it to a full-fledged QPRF
- The key ingredient is a highly unbalanced bipartite expander [GUV09]
 - It crucially allows us to reduce the quantum hardness of our PRF to the classical (post-quantum) hardness of a small-domain PRF

Results (cont.)

- Our construction preserves the key-homomorphic property of underlying PRF, giving a quantum key-homomorphic PRF for free
- Key-homomorphic PRFs were introduced by Boneh et al. In a nutshell, for key-homomorphic PRFs the key-space is a group and it holds for all x that $\mathsf{PRF}(K_1 + K_2, x) = \mathsf{PRF}(K_1 + K_2, x)$
- Key-homomorphic PRFs have applications in the context of proxy-re-encryption and related key security.
- It give rise to a very natural protocol for a distributed PRF

$$(x_1, x) + \mathsf{PRF}(K_2, x).$$

Outline

- There are two steps, a domain extension step and a combiner step
- PRF on a large domain.
 - for adversaries which make at most q queries.
- PRFs which have the same domain.

• The domain extension step takes a small domain PRF with domain size *poly(q)* and constructs from it a *q*-bounded

• A PRF is called *q*-bounded if security is only guaranteed

• The combiner step, combines a small number of bounded

Combiner Step

- The key idea here is to set the bounds in an exponentially increasing way.
- Specifically, if $F_q(K_q, x)$ are q-bounded PRFs, we combine them into a function F via

$$F(K, x) = \bigoplus_{i=1}^{t} F_{2i}(K_{2i}, x)$$

where *t* will be chosen slip

security parameter λ .

- c), where $K = (K_{2^1}, \ldots, K_{2^t})$,
- ghtly super-logarithmic in the

Combiner Step (cont.)

- We claim that if $F_q(K_q, x)$ is a *q*-bounded QPRF as long as q is polynomial, then F(K, x) is an unbounded QPRF.
- The security derives from the following fact: for an efficient (BQP) distinguisher, there is an upper bound q' on the number of superposition queries it can make. Thus we are able to choose $i' = \lceil \log q' \rceil \leq t$ to reduce the security of F to the i'-th bounded PRF $F_{2i'}$.

Domain Extension Step

- As mentioned, domain extension is challenging
- As shown before, statistically secure against classical adversary is not sufficient
- We need a perfectly secure domain extension step
- If so, we can use the Zhandry's lemma [FOCS'12] which states that any classical 2*q*-wise-independent function is identically distributed to a uniform function from the view of a *q*-bounded quantum adversary.

Perfectly secure domain extension from highly unbalanced bipartite expander

A bipartite graph Γ where the set of left vertices [N] can be made superpolynomially large, the set of right vertices [L] is only polynomially large and the degree D is polylogarithmic.

Q-unique

- Moreover, we require an additional unique neighbour property for unbalanced bipartite expander:
- For any subset S ⊂ [N] of left-vertices not larger than a (polynomial) bound Q, there exists a vertex v in Γ(S) ⊂ [L] (the neighbourhood of S) which has a unique neighbour in S.

 A construction of such graph is given in [GUV09]

Extend a random function

- function g defined on the large domain [N]:

•
$$g(x) = \bigoplus_{j \in [D]} f(\Gamma(x, j)), v$$

• First, we show how to extend a small-domain truly random function to Q-wise-independent function (where Q will be selected later)

• Q-wise-independent: for any pairwise distinct $x_1, \ldots, x_O \in [N]$ that $g(x_1), \ldots, g(x_O)$ are independent and uniformly random

• With a Q-unique expander Γ , for a random function f defined on the small domain [L], we extend it to a Q-wise-independent

where $\Gamma(x, j)$ is the *j*-th neighbour of *x*.

Sketch of the Proof $_1$

- By the Q-unique property of Γ , for any subset $S' \subset S = \{x_1, ..., x_Q\}$, there exist a vertex $v' \in \Gamma(S')$ having a unique neighbour $x_{i'} \in S'$
- Thus there is an index $j' \in [D]$ such that $f(\Gamma(x_{i'}, j'))$ only appears in $g(x_{i'})$ but not other $g(x_i)$
- Given $f(\Gamma(x_{i'}, j')$ is uniformly random and independent of other $g(x_i)$, so is $g(x_{i'})$
- Therefore we can recursively repeat to show every $g(x_i)$ is uniformly random and independent

Replace it with a PRF

- Then, we replace the random function with a small-domain PRF and choose Q = 2q.
- We claim that if it is a post-quantum PRF with (polynomially-sized) domain [L], then it holds that
 - $F(K, x) = \bigoplus_{j \in [D]} \mathsf{PRF}(K, \Gamma(x, j))$ is indistinguishable from the 2*q*-wise-independent function $g(x) = \bigoplus_j f(\Gamma(x, j))$ for a *q* -bounded BQP quantum adversary
- Finally, by using Zhandry's lemma, it directly implies the 2q -uniform function F(K, x) is indeed a q-bounded QPRF

Sketch of the Proof,

- security of underlying PRF
- such that $U_{\emptyset}|x,y\rangle = |x,y + \mathcal{O}(x)\rangle$
- Now, *I* gives *I* superposition access to its simulated oracle $\mathcal{O}': |x, y\rangle \to U_{\mathcal{O}} |x, y\rangle$ and outputs what \mathcal{A} outputs
- **PRF** from a truly random function

• Suppose a q-bounded BQP adversary \mathscr{A} can distinguish between F(K, x) and g(x), we will show another \mathscr{A}' can break the post-quantum

• Let the adversary \mathscr{A}' classically query the oracle \mathscr{O} (on a small-domain) to build its function table, then locally computes a quantum circuit $U_{\mathcal{O}}$

• Clearly, if \mathscr{A} can distinguish F(K, x) from g(x), then \mathscr{A}' can distinguish

Summary

- Generic and simple construction
- No need to go through GGM construction
- Optimally tight proof

Thank you!