

Post-Quantum Verification of Fujisaki-Okamoto

Dominique Unruh University of Tartu

Post-Quantum Encryption

- Quantum computers: Break existing public key crypto
- NIST competition: Search for next gen PK standard
- Classic McEliece, Crystals-Kyber, NTRU, Saber
- Typical construction:
 Fujisako-Okamoto in ROM

Formal verification

Standard approach: <u>Human writes proof, human reads proof</u>

- Error-prone (especially with quantum)
- Experts must check every step

Formal verification:

Human writes proof, computer reads proof

• Experts only verify spec

Approaches for formal verification

Many tools: EasyCrypt, CryptHOL, FCF, CryptoVerif, Verypto, ...

Game-based proofs

Post-Quantum Verification of Fujisaki-Okamoto

qRHL

(14)3 リーリ (10) **qRHL:** Quantum relational Hoare logic

- Similar to pRHL from EasyCrypt
- But for quantum programs

grhl-tool: Theorem prover for gRHL

Designed for quantum crypto proofs

		and so parts					
ile Edit Options Buffers Tools qRHL Proof-6	Seneral I	Help					
Goal 🛣 Retract 🚽 Undo 🕨 Next 🕱 Use	HGoto	@ Qed	Home	Command	C intern	pt	
sinp. rnd. skip. sinp. ed.	No [f	current	goal.] DEBUG	qrhl.isabelle	r.Isabell	le . •	
emma rorcpa1_prg1: Pr[b=1:rorcpa1(rho)]						- 1	
bygrhl. simp. inline rorcpal. inline prgl. inline B.							
equal.	U	:XX- *gc	als*	All L1	(qRHL	goals)	
stap. stap. wp left. wp right 1 stap. swap right 1 1. smap rr < map_distr (λr. (r,r + G ki + stap.	n2+						
equal.							
simpl. wp left.							
skip.							
sino.							

Only toy examples!

HKSU

Hövelmanns, Kiltz, Schäge, and Unruh (PKC 2020)

- KEM via Fujisaki-Okamoto variant
- Supports decryption errors

Our contribution

- Formalized HKSU proof
- First nontrivial post-quantum proof
- Involves QROM! (Not "essentially classical")
- Shows viability of qRHL approach
- Added O2H theorem to qrhl-tool
- Need for local variables

qRHL judgments

$$\{X =_{q} Y\} \quad quantum \ game_{1} \\ \sim quantum \ game_{2} \quad \{X =_{q} Y\}$$

Pre/postconditions can talk about quantum states

Demo

game0F0.qrhl
game1F0.qrhl
lemma_game0F0_game1F0.qrhl

(available at https://tinyurl.com/hksu-ac2020)

Post-Quantum Verification of Fujisaki-Okamoto

Lessons learned

- Largest part like a classical formalization
 Except for dragging along quantum-equality
- Few proof steps need quantum-specific reasoning
 - O2H theorem
 - Rewriting quantum circuits
 - Tedious! Need automation

Open questions / future work

• Verification of NIST candidates "as is"

• Better quantum automation

• Fully quantum protocols (e.g., QKD)

Postdoc/phd at University of Tartu:

Verification of Quantum Cryptography

European Research Council

erc

http://tinyurl.com/postdoc-vqc

Established by the European Commission

- Quantum crypto?
- Quantum logic?
- Thm proving?

