Twisted-PHS: Using the Product Formula to Solve Approx-SvP in Ideal Lattices

Olivier Bernard<sup>1,2</sup> Adeline Roux-Langlois<sup>1</sup>

<sup>1</sup>Univ Rennes, CNRS, IRISA {olivier.bernard, adeline.roux-langlois}@irisa.fr
<sup>2</sup>Thales, Gennevilliers, Laboratoire CHiffre

#### Asiacrypt 2020

9<sup>th</sup> December







<ロト (四) (注) (注) (注) (注) (注)

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results 0000

# Today's à la carte

#### Historical timeline

#### A twisted description of the log-S-unit lattice

- Units: reducing Principal Ideal Generators
- S-units: reducing Class group Discrete Logarithms
- Using the Product Formula

#### 3 Experimental results

- Log-S-unit lattice geometry
- Ideal-SVP approximation factors

#### What's next ?

< ロ > < 同 > < 回 > < 回 >

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results 0000

# Today's à la carte

#### Historical timeline

2 A twisted description of the log-S-unit lattice

- Units: reducing Principal Ideal Generators
- S-units: reducing Class group Discrete Logarithms
- Using the Product Formula

#### Experimental results

- Log-S-unit lattice geometry
- Ideal-SVP approximation factors

#### 4 What's next ?

イロト イ団ト イヨト イヨト

| Historical timeline            | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|--------------------------------|-------------------------------------------------|----------------------|---------------|
| 0000                           | 000000                                          | 0000                 | 00            |
| $C_{1}$ $\cdots$ $\lambda_{i}$ |                                                 |                      |               |

### Shortest Vector Problem

# Definition (Lattice) A lattice L is a discrete subgroup of $\mathbb{R}^n$ (say a " $\mathbb{Z}$ -vector space"). **Example:** $\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ and $\begin{pmatrix} 13 & 5 \\ 17 & 6 \end{pmatrix}$ are two possible bases. Shortest Vector Problem (SVP) Given a basis of L, find the shortest $v \in L$ : $\|v\|_2 = \lambda_1(L).$ Structured variants: Ideal, Module

#### ► Hard problem (quantumly and classically)

| Ο. | Bernard | and A. | ROUX-LANGLOIS |
|----|---------|--------|---------------|
|----|---------|--------|---------------|

• • • • • • • • • • •

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results 0000

# On lattice-based cryptography

#### Post-Quantum Cryptography: NIST Competition

- Numerous lattice-based submissions;
- Rely (mostly) on LWE, Ring-LWE et Module-LWE;

#### Security proofs

Worst case to average case reductions, in particular:

$$\label{eq:svp_state} \begin{split} & \mathsf{id}\text{-}\mathrm{Svp} \leq \mathsf{Ring}\text{-}\mathsf{LWE}, \\ & \mathsf{mod}\text{-}\mathrm{Svp} \leq \mathsf{Module}\text{-}\mathsf{LWE}. \end{split}$$

#### ► How hard is id-SVP?

< ロ > < 同 > < 回 > < 回 >

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 0000                 | 00            |
| <u> </u>            |                                                 |                      |               |

### Structured cryptanalysis

#### Algorithmic Number Theory

Class group, units, S-units computations:

- Classically:  $2^{\sqrt{n}}$  in cyclotomic fields,  $2^{n^{2/3}}$  in general.
- Quantumly: polynomial [EHKS14,BS16]

(number field of degree n)

< ロ > < 同 > < 回 > < 回 >

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 0000                 | 00            |
| Structured c        | ryptanalysis                                    |                      |               |

#### Impacts on Approx-id-SVP ?

- [CGS14] Find a short generator is easy? (Cyclotomic fields)
- **2** [CDPR16] Proves [CGS14], generically does not solve id-SVP.
- [CDW17] Extend to all ideals thanks to the Stickelberger lattice.
- [DPW19] Experiments on [CDW17]: beats BKZ-300 for  $n \ge 24000$ .
- [PHS19] Extends to all fields, but precomputation in 2<sup>n</sup>.



<sup>1</sup>Graphs taken from [PHS19, Fig.1.1-2]. Thanks to Alice Pellet-Mary for sharing !

| Historical | timeline |
|------------|----------|
| 00000      |          |

## This work: a new twisted log-S-unit lattice description

#### Our work: Twisted-PHS

- Description of the log-S-unit lattice using the Product Formula: add weights ln N(p) to valuations at p.
- Prove this is at least as good as [PHS19] (under same heuristics).
- Separation Section 2018 Section



Figure: prime conductor cyclotomic fields, avg. over 50 ideals of 100-bits prime norm.

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental result 0000 What's next ?

### Experimental consequences: a Christmas list

#### Potential impacts on Approx-id-SVP:

- No theoretical impact (yet)
- Orthogonal: No more exponential precomputation (quantumly) ?
- Tiny aproximation factors: beats Schnorr's hierarchy ?

▶ Towards a quantum polynomial time algorithm to break id-SVP ?



Figure: prime conductor cyclotomic fields, avg. over 50 ideals of 100-bits prime norm.

A twisted description of the log-S-unit lattice

Experimental results 0000 What's next ? 00

# Today's à la carte

#### Historical timeline

#### A twisted description of the log-S-unit lattice

- Units: reducing Principal Ideal Generators
- S-units: reducing Class group Discrete Logarithms
- Using the Product Formula

#### Experimental results

- Log-S-unit lattice geometry
- Ideal-SVP approximation factors

#### 4) What's next ?

< ロ > < 同 > < 回 > < 回 >

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 00000                                           | 0000                 | 00            |
| The log-unit l      | attice                                          |                      |               |

Let K a number field of degree n,  $\{\sigma : K \hookrightarrow \mathbb{C}\}$  its embeddings into  $\mathbb{C}$ .

Algebraic unit An algebraic integer  $u \in K$  is a unit iff:

$$1 = |\mathcal{N}(u)| \quad (= \prod_{\sigma} |\sigma(u)|).$$

Logarithmic embedding

$$\operatorname{Log}_{\infty} : \alpha \in K \longmapsto (\ln |\sigma(\alpha)|)_{\sigma} \quad \in \mathbb{R}^{n}.$$

Hence:

- u is a unit  $\iff Log_{\infty}(u) \in \mathbf{1}^{\perp}$ .
- Their images form the log-unit lattice:  $\Lambda_K \subsetneq \mathbf{1}^{\perp}$ .

э

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 00000                                           | 0000                 | 00            |
| The log-unit l      | attice                                          |                      |               |

Let K a number field of degree n,  $\{\sigma : K \hookrightarrow \mathbb{C}\}$  its embeddings into  $\mathbb{C}$ .

Algebraic unit An algebraic integer  $u \in K$  is a unit iff:

$$1 = |\mathcal{N}(u)| \quad \left(=\prod_{\sigma} |\sigma(u)|\right).$$

Logarithmic embedding

$$\operatorname{Log}_{\infty} : \alpha \in K \longmapsto (\ln |\sigma(\alpha)|)_{\sigma} \qquad \in \mathbb{R}^{n}.$$

Hence:

- u is a unit  $\iff \operatorname{Log}_{\infty}(u) \in \mathbf{1}^{\perp}$ .
- Their images form the log-unit lattice:  $\Lambda_K \subsetneq \mathbf{1}^{\perp}$ .

э

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 00000                                           | 0000                 | 00            |
| The log-unit l      | attice                                          |                      |               |

Let K a number field of degree n,  $\{\sigma : K \hookrightarrow \mathbb{C}\}$  its embeddings into  $\mathbb{C}$ .

Algebraic unit An algebraic integer  $u \in K$  is a unit iff:

$$1 = |\mathcal{N}(u)| \quad \left(=\prod_{\sigma} |\sigma(u)|\right).$$

Logarithmic embedding

$$\operatorname{Log}_{\infty}: \alpha \in K \longmapsto \left( \operatorname{ln} |\sigma(\alpha)| \right)_{\sigma} \qquad \in \mathbb{R}^{n}.$$

#### Hence:

- u is a unit  $\iff Log_{\infty}(u) \in \mathbf{1}^{\perp}$ .
- Their images form the log-unit lattice:  $\Lambda_K \subsetneq \mathbf{1}^{\perp}$ .

э

A twisted description of the log-S-unit lattice

Experimental results 0000 What's next ?

# Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .

**Shortest generator:**  $g = u^{-1} \cdot g_0$ ,  $\log_{\infty} g \in \log_{\infty} g_0 + \Lambda_K$ .

• Project  $\operatorname{Log}_{\infty} g_0$  into  $\mathbb{R} \otimes \Lambda_K$ .

● Find the closest  $Log_{\infty} u \in \Lambda_{K}$ .

Output  $g_0/u$ .



イロト イ団ト イヨト イヨト

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results Wha

### Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results What 0000 00

### Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results Wh 0000 00

### Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results What

### Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



< ロ > < 同 > < 回 > < 回 >

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results What OOOO OO

### Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



< ロ > < 同 > < 回 > < 回 >

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results Wh 0000 00

# Folklore: generator reduction

Let  $\mathfrak{b}$  a principal ideal challenge, given as  $\langle g_0 \rangle = \mathfrak{b}$ .



A twisted description of the log-S-unit lattice

Experimental results 0000 What's next ? 00

# Extension: CIDL and S-units

Let  $FB = \{p_1, \dots, p_k\}$  a factor base of prime ideals.

Class Group Discrete Logarithm (ClDL) Problem

Write  $\mathfrak{b}$  as:  $\langle \alpha \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p}_i \in \mathsf{FB}} \mathfrak{p}_i^{\mathbf{v}_i}$  for some  $\mathbf{v}_i \in \mathbb{Z}$ .

#### S-units with respect to FB

s is a S-unit wrpt. FB iff  $\langle s \rangle = \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{v_\mathfrak{p}(s)}$ .

**General idea [PHS19]:** Reduce  $\alpha$  by using S-units.

$$\varphi_{\mathsf{phs}}(\alpha) \approx \Big( \big\{ \mathsf{ln} | \sigma(\alpha) | \big\}_{\sigma}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \big\}_{\mathfrak{p} \in \mathsf{FB}} \Big).$$

▶ Problem: Non homogeneous description.

Experimental results

What's next ?

# A new twisted log-S-unit lattice description

Let  $FB = \{p_1, \dots, p_k\}$  a factor base of prime ideals.

| The Product Formula           |                                                                                        |
|-------------------------------|----------------------------------------------------------------------------------------|
| For all $\alpha \in K$ :      | (in $\mathbb{Q}$ : $1 =  12  \cdot 2^{-2} \cdot 3^{-1}$ )                              |
| $1 = \prod_{\sigma}   \sigma$ | $(lpha) \cdot\prod_{\mathfrak{p}}\mathcal{N}(\mathfrak{p})^{-v_{\mathfrak{p}}(lpha)}.$ |

S-logarithmic embedding

$$\mathsf{Log}_{\infty,\mathsf{FB}}(\alpha) = \left( \{ \mathsf{ln} | \sigma(\alpha) | \}_{\sigma}, \{ -v_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \}_{\mathfrak{p} \in \mathsf{FB}} \right).$$

With this new representation ("twisted"):

• s is a S-unit  $\iff$   $\mathsf{Log}_{\infty,\mathsf{FB}}(s) \in \mathbf{1}^{\perp}.$ 

• Their images form the log-S-unit lattice:  $\Lambda_{K,FB} \subsetneq \mathbf{1}^{\perp}$  in  $\mathbb{R}^{n+k}$ .

イロト イボト イヨト イヨト

Experimental results

What's next ?

# A new twisted log-S-unit lattice description

Let 
$$FB = \{p_1, \dots, p_k\}$$
 a factor base of prime ideals.

S-units with respect to FB s is a S-unit wrpt. FB iff: (Product formula still holds on FB)  $1 = \prod_{\sigma} |\sigma(s)| \cdot \prod_{p \in \mathsf{FB}} \mathcal{N}(p)^{-v_p(s)}.$ 

S-logarithmic embedding

$$\mathsf{Log}_{\infty,\mathsf{FB}}(\alpha) = \left( \{ \mathsf{ln} | \sigma(\alpha) | \}_{\sigma}, \{ -v_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \}_{\mathfrak{p} \in \mathsf{FB}} \right).$$

With this new representation ("twisted"):

- s is a S-unit  $\iff$   $\mathsf{Log}_{\infty,\mathsf{FB}}(s) \in \mathbf{1}^{\perp}.$
- Their images form the log-S-unit lattice:  $\Lambda_{K,FB} \subsetneq \mathbf{1}^{\perp}$  in  $\mathbb{R}^{n+k}$ .

Experimental results

What's next ?

# A new twisted log-S-unit lattice description

Let 
$$FB = \{p_1, \dots, p_k\}$$
 a factor base of prime ideals.

S-units with respect to FB s is a S-unit wrpt. FB iff: (Product formula still holds on FB)  $1 = \prod_{\sigma} |\sigma(s)| \cdot \prod_{p \in \mathsf{FB}} \mathcal{N}(p)^{-v_p(s)}.$ 

#### S-logarithmic embedding

$$\mathsf{Log}_{\infty,\mathsf{FB}}(\alpha) = \Big( \big\{ \mathsf{ln}|\sigma(\alpha)| \big\}_{\sigma}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln}\,\mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p}\in\mathsf{FB}} \Big).$$

With this new representation ("twisted"):

• s is a S-unit  $\iff$   $\mathsf{Log}_{\infty,\mathsf{FB}}(s) \in \mathbf{1}^{\perp}.$ 

• Their images form the log-S-unit lattice:  $\Lambda_{K,FB} \subsetneq \mathbf{1}^{\perp}$  in  $\mathbb{R}^{n+k}$ .

э

Experimental results

What's next ?

# A new twisted log-S-unit lattice description

Let 
$$FB = \{p_1, \dots, p_k\}$$
 a factor base of prime ideals.

S-units with respect to FB s is a S-unit wrpt. FB iff: (Product formula still holds on FB)  $1 = \prod_{\sigma} |\sigma(s)| \cdot \prod_{p \in FB} \mathcal{N}(p)^{-v_p(s)}.$ 

S-logarithmic embedding

$$\mathsf{Log}_{\infty,\mathsf{FB}}(\alpha) = \Big( \big\{ \mathsf{ln}|\sigma(\alpha)| \big\}_{\sigma}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln}\,\mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p}\in\mathsf{FB}} \Big).$$

With this **new** representation ("twisted"):

- s is a S-unit  $\iff \mathsf{Log}_{\infty,\mathsf{FB}}(s) \in \mathbf{1}^{\perp}.$
- Their images form the log-S-unit lattice:  $\Lambda_{K,FB} \subsetneq \mathbf{1}^{\perp}$  in  $\mathbb{R}^{n+k}$ .

э

A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000 What's next ?

# Our CIDL reduction algorithm



A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000 What's next ?

# Our CIDL reduction algorithm



イロト イヨト イヨト

A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000 What's next ?

# Our CIDL reduction algorithm

Let  $\mathfrak{b}$  any ideal challenge, as  $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{\nu_p}$ . (CIDL solution)



- Project  $\text{Log}_{\infty,\text{FB}} \alpha_0$  into  $\mathbf{1}^{\perp}$ .
- **2** Find closest  $\text{Log}_{\infty,\text{FB}} s \in \Lambda_{K,\text{FB}}$ .

Output  $\alpha_0/s$ .



イロト イヨト イヨト

A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000 What's next ?

# Our CIDL reduction algorithm

Let  $\mathfrak{b}$  any ideal challenge, as  $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{\nu_p}$ . (CIDL solution)

Shortest CIDL:  $\alpha = s^{-1} \cdot \alpha_0$ ,  $\log_{\infty,FB} \alpha \in \log_{\infty,FB} \alpha_0 + \Lambda_{K,FB}$ .

• Project  $\text{Log}_{\infty,\text{FB}} \alpha_0$  into  $\mathbf{1}^{\perp}$ .

② Find closest  $Log_{\infty,FB}$  *s* ∈  $\Lambda_{K,FB}$ .

Output  $\alpha_0/s$ .



イロト イヨト イヨト

A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000

# Our CIDL reduction algorithm

Let  $\mathfrak{b}$  any ideal challenge, as  $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{\nu_p}$ . (CIDL solution)



A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000 What's next ?

# Our CIDL reduction algorithm

Let  $\mathfrak{b}$  any ideal challenge, as  $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{v_p}$ . (CIDL solution)



(日) (同) (日) (日)

13 / 19

A twisted description of the log-S-unit lattice ○○○○○● Experimental results 0000

# Our CIDL reduction algorithm

Let  $\mathfrak{b}$  any ideal challenge, as  $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathsf{FB}} \mathfrak{p}^{\nu_\mathfrak{p}}$ . (CIDL solution)



| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results |
|---------------------|-------------------------------------------------|----------------------|
| 00000               | 000000                                          | <b>0</b> 000         |

# Today's à la carte

#### Historical timeline

### 2 A twisted description of the log-S-unit lattice

- Units: reducing Principal Ideal Generators
- S-units: reducing Class group Discrete Logarithms
- Using the Product Formula

#### 3 Experimental results

- Log-S-unit lattice geometry
- Ideal-SVP approximation factors

#### What's next ?

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000                  | 00            |
| Quality est         | imators                                         |                      |               |

Tricky to evaluate the "quality" of a basis: ► Use several criteria to quantify "short" and "orthogonal"

- Root-Hermite factor:
- Orthogonality defect (normalized):
- I Vector basis angles (min, average):
- Iot Gram-Schmidt log norms.

(SVP-like problems) (CVP-like problems) ~ Random results ?)

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000                  | 00            |
| Quality estim       | ators                                           |                      |               |

Tricky to evaluate the "quality" of a basis: ► Use several criteria to quantify "short" and "orthogonal"

O Root-Hermite factor:

(SVP-like problems)

$$\delta_0^d(B_L) = \frac{\|\mathbf{b}_1\|}{\operatorname{Vol}^{1/d} L}.$$

Orthogonality defect (normalized):

I Vector basis angles (min, average):

Plot Gram-Schmidt log norms.

(CVP-like problems) ~ Random results ?)

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000                  | 00            |
| Quality estim       | ators                                           |                      |               |

Tricky to evaluate the "quality" of a basis:

- ▶ Use several criteria to quantify "short" and "orthogonal"
  - Root-Hermite factor:
  - Orthogonality defect (normalized):

$$\delta^d(B_L) = \frac{\prod_i \|\mathbf{b}_i\|}{\operatorname{Vol} L}.$$

Vector basis angles (min, average): (~ Random results ?)
 Plot Gram-Schmidt log norms.

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000                  | 00            |
| Quality estim       | ators                                           |                      |               |

Tricky to evaluate the "quality" of a basis: ► Use several criteria to quantify "short" and "orthogonal"

- Root-Hermite factor:
- Orthogonality defect (normalized):
- Over the second seco

(SVP-like problems)

(CVP-like problems)

( $\sim$  Random results ?)

$$\min\{\theta_{ij}, \pi - \theta_{ij}\}, \quad \text{for } \theta_{ij} = \frac{\arccos\langle \mathbf{b}_i, \mathbf{b}_j \rangle}{\|\mathbf{b}_i\| \|\mathbf{b}_j\|}.$$

Iot Gram-Schmidt log norms.

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 0000                 | 00            |
| Quality estin       | nators                                          |                      |               |

Tricky to evaluate the "quality" of a basis:

- ▶ Use several criteria to quantify "short" and "orthogonal"
  - O Root-Hermite factor:
  - Orthogonality defect (normalized):
  - Vector basis angles (min, average):
  - Plot Gram-Schmidt log norms.

(SVP-like problems)

(CVP-like problems)

( $\sim$  Random results ?)

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000                  | 00            |
| Quality estim       | ators                                           |                      |               |

Tricky to evaluate the "quality" of a basis:

- ▶ Use several criteria to quantify "short" and "orthogonal"
  - O Root-Hermite factor:
  - Orthogonality defect (normalized):
  - Over the second seco
  - Plot Gram-Schmidt log norms.

(SVP-like problems) (CVP-like problems)

( $\sim$  Random results ?)

#### Observations Twisted-PHS/PHS

- Better (absolute) values in the twisted case.
- Much smaller gap before/after some BKZ reduction.

15 / 19

< ロ > < 同 > < 回 > < 回 >

A twisted description of the log-S-unit lattice 000000

Experimental results

What's next ?

# Twisted log-S-unit basis quality

Seems very orthogonal ! Experimental observation, e.g. for  $\mathbb{Q}(\zeta_{59})$ :



- Flatter Gram-Schmidt log norms curve
- Pewer differences before/after BKZ
- Section BKZ Timings: Tw-PHS O(10s) / PHS O(10 min) PHS (same FB)

► Can we just use some naive CVP oracle in the twisted case ?

A B A B A B A

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               | 000000                                          | 000●                 | 00            |
|                     |                                                 |                      |               |

# Sledgehammer argument

#### Approximation factors: grows extremely slowly with the degree.



Figure: prime conductor cyclotomic fields, avg. over 50 ideals of 100-bits prime norm.

| Historical | timeline |
|------------|----------|
| 00000      |          |

Experimental results 0000

# Today's à la carte

#### Historical timeline

#### 2 A twisted description of the log-S-unit lattice

- Units: reducing Principal Ideal Generators
- S-units: reducing Class group Discrete Logarithms
- Using the Product Formula

#### Experimental results

- Log-S-unit lattice geometry
- Ideal-SVP approximation factors

#### What's next ?

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               |                                                 | 0000                 | ○●            |
| On-going wo         | rk                                              |                      |               |

- Theoretic proofs:
  - Orthogonality of the (twisted) log-S-unit lattice for cyclotomic fields,
  - Tighter bounds on Tw-PHS approximation factor ?
- Section 2 Sec
  - Multiquadratic/multicubic fields,
  - Cyclotomic fields using (sthg related to) the Stickelberger lattice.
- Module-SVP: apply similar homogeneization ideas to [LPSW19]<sup>2</sup>.

<sup>2</sup>[LPSW19] An LLL Algorithm for Module Lattices

| Historical timeline | A twisted description of the log-S-unit lattice | Experimental results | What's next ? |
|---------------------|-------------------------------------------------|----------------------|---------------|
| 00000               |                                                 | 0000                 | ⊙●            |
| On-going wor        | k                                               |                      |               |

- Theoretic proofs:
  - Orthogonality of the (twisted) log-S-unit lattice for cyclotomic fields,
  - Tighter bounds on Tw-PHS approximation factor ?
- Section 2 Sec
  - Multiquadratic/multicubic fields,
  - Cyclotomic fields using (sthg related to) the Stickelberger lattice.
- Solution Module-SVP: apply similar homogeneization ideas to [LPSW19]<sup>2</sup>.



# Questions ?

<sup>2</sup>[LPSW19] An LLL Algorithm for Module Lattices

A D b 4 B b