Simpler Statistically Sender Private Oblivious Transfer from
Ideals of Cyclotomic Integers

Daniele Micciancio, Jessica Sorrell
Asiacrypt 2020

University of California, San Diego

Oblivious Transfer

Sender (mo, m1) Receiver(f3)

0,91 & RecM ()

$ o
Lo, i1 < Send(mo, m1,0) -~
o, iy m Rec(z)(ﬂ. ST, po, f41)

- Oblivious Transfer (OT) [Rabin'81] is complete for secure multi-party
computation (MPC) [Kilian'88]

Oblivious Transfer

Sender (mo, m1) Receiver(f3)

0,91 & RecM ()

$ o
Lo, i1 < Send(mo, m1,0) -~
o, iy m Rec(z)(,ﬁ. ST, po, f41)

- Oblivious Transfer (OT) [Rabin'81] is complete for secure multi-party
computation (MPC) [Kilian'88]

- Allows a Receiver to receive one of two messages from a Sender
without the Sender learning which message was sent, and without the
Receiver learning anything about the other message.

2-Round OT Definitions

Correctness

An OT = (Rec, Send, Rec®?) protocol is correct if for any pair of messages
mo, my and bit g € {0, 1},

Pr[Rec? (Send(mo, mi,Rec(B))) = mg] > 1—¢

for some negligible function e(n) = n=+(,

2-Round OT Definitions

Correctness

An OT = (Rec, Send, Rec®?) protocol is correct if for any pair of messages
mo, my and bit g € {0, 1},

Pr[Rec? (Send(mo, mi,Rec(B))) = mg] > 1—¢

for some negligible function e(n) = n=*(.

Statistical sender privacy (SSP)

An OT = (Rec™, Send, Rec®) protocol is statistically sender private if for any
receiver message o, there exists a bit b, such that for any pair of messages
(mo, my) the two distributions

{Send(mo, M, o)} ~a {Send(my, mp, o)}

are statistically close.

2-Round OT Definitions

Computational receiver privacy

An OT = (Rec, Send, Rec®) protocol is computationally receiver private if
the two distributions
Rec(1) = Rec(0)

are computationally indistinguishable.

Statistical sender privacy (SSP)

An OT = (Rec™, Send, Rec®®) protocol is statistically sender private if for any
receiver message o, there exists a bit b, such that for any pair of messages
(Mo, m1) the two distributions

{Send(mo, m, o)} ~a {Send(my, mp, o)}

are statistically close.

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic
Residuosity [Halevi-Kalai'12]

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic
Residuosity [Halevi-Kalai'12]

- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable
(UC-secure) lattice-based OT protocol

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic
Residuosity [Halevi-Kalai'12]

- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable
(UC-secure) lattice-based OT protocol

- [Brakerski-Dottling'18] gave first SSP OT protocol from lattice
assumptions

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic
Residuosity [Halevi-Kalai'12]

- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable
(UC-secure) lattice-based OT protocol

- [Brakerski-Dottling'18] gave first SSP OT protocol from lattice
assumptions

- SSP OT from compressible fully-homomorphic encryption
[Gentry-Halevi'19] [Brakerski-Dottling-Garg-Malavolta'19]
[Badrinarayanan-Garg-Ishai-Sahai-Wadia'17]

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic
Residuosity [Halevi-Kalai'12]

- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable
(UC-secure) lattice-based OT protocol

- [Brakerski-Dottling'18] gave first SSP OT protocol from lattice
assumptions

- SSP OT from compressible fully-homomorphic encryption
[Gentry-Halevi'19] [Brakerski-Dottling-Garg-Malavolta'19]
[Badrinarayanan-Garg-Ishai-Sahai-Wadia'17]

Receiver Sender Overall

Co) Operations
Comm. (bits) | Comm. (bits)| Rate perations

Scheme Modulus ¢

[BD18] |©(n*log>* n-4(n))| ©(nlog’>n) | O(nlog?n) |O(1/nlog’>n)| O(n*)

[DGIT19] O(n*?) O(n*log’n) | @(nlogn) |O(1/nlog?n)| O(n*logn)

[GH19] 20" 1og!n) | O(nlog?n) | On*logn) |O(1/nlog?n)| 2(n'+)

[BDGM19]| O(n*7log?n) | O(n?log’n) | @(nlogn) |O(1/nlog?n)|2(n*log? n)

This work o(n*y%(n)) O(nlogn) | O(nlogn) |©(1/logn)|@(nlogn)

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PVW'08, BD'18] we construct SSP OT from “lossy encryption.”

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PVW'08, BD'18] we construct SSP OT from “lossy encryption.”

6 = ==

pko pk

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PVW'08, BD'18] we construct SSP OT from “lossy encryption.”

6 = ==

pko pk

K ..

Message preserving

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PVW'08, BD'18] we construct SSP OT from “lossy encryption.”

6 = ==

pko pk

i
g”%w)j &ﬁ

Message preserving Message lossy

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PVW'08, BD'18] we construct SSP OT from “lossy encryption.”

= =~ (==

pko pk

i
g”%w)j &ﬁ

Message preserving Message lossy

SSP OT from Lossy Encryption [PVYW’08, BD'18]

Following [PYW'08, BD'18] we construct SSP OT from “lossy encryption.”

= =~ (=

pRo ol

4 ’* L
éw& 2E . ‘
Message preserving Message lossy

Sender (mo, my) Receiver(p)

- 0,91 & RecM ()
140, 11 & Send(mo, m1,0) ~
Lo b m < Rec(Q)([)’, ST, po, f41)

Lattice Defs

- A lattice is a discrete additive subgroup of R™

%Image credit: Oded Regev

Lattice Defs

- A lattice is a discrete additive subgroup of R™
- Given a basis B € R"*™, define

A(B):={B'z:zeZ"}

%Image credit: Oded Regev

Lattice Defs

- A lattice is a discrete additive subgroup of R™
- Given a basis B € R"*™, define

A(B):={B'z:zeZ"}
- The dual lattice A* is defined

N ={xeR":WyeA Yy €z}

%Image credit: Oded Regev

Lattice Defs

- A lattice is a discrete additive subgroup of R™
- Given a basis B € R"*™, define

A(B):={B'z:zeZ"}
- The dual lattice A* is defined

N ={xeR":WyeA Yy €z}

ﬁr . . It .
y — il
A A*

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice A(B), encode message m € Zj as
follows:

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice A(B), encode message m € Zj as
follows:

- Use m to select a lattice vector B'm

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice A(B), encode message m € Zj as

follows:

- Use m to select a lattice vector B'm

- Sample e ~ Dzm

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice A(B), encode message m € Zj as

follows:

- Use m to select a lattice vector B'm
- Sample e ~ Dzm

- Return perturbed vector B'm + e

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice A(B), encode message m € Zg as
follows:

Low relative noise

- Use m to select a lattice vector B'm
- Sample e ~ Dzm
- Return perturbed vector B'm + e

- In a sufficiently sparse lattice with respect to o,
can efficiently recover m given a short basis B*
for A* [Babai’86], [Aharanov-Regev'05],
[Liu-Lyubashevsky-Micciancio’06]

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

Moderate noise

- Given lattice A(B), encode message m € Zg as

follows:

- Use m to select a lattice vector B'm
- Sample e ~ Dzm
- Return perturbed vector B'm + e

- In a sufficiently sparse lattice with respect to o,

can efficiently recover m given a short basis B*
for A* [Babai’86], [Aharanov-Regev'05],
[Liu-Lyubashevsky-Micciancio’06]

- But for large o, even maximum likelihood

decoding doesn’t work

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

Low relative noise

ii :“/

Moderate noise

Oof...

- Given lattice A(B), encode message m € Zg as

follows:

- Use m to select a lattice vector B'm
- Sample e ~ Dzm
- Return perturbed vector B'm + e

- In a sufficiently sparse lattice with respect to o,

can efficiently recover m given a short basis B*
for A* [Babai’86], [Aharanov-Regev'05],
[Liu-Lyubashevsky-Micciancio’06]

- But for large o, even maximum likelihood

decoding doesn’t work

%Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

Algorithm 1 Rec(” Algorithm 2 Send
Input: b € {0,1} Input: B, mo, m1 € {0,1}"
if b =0 then Yo < Encode(A(B), mo)
B « basis for sparse lattice y1 < Encode(A*(B), m)
else return (yo, 1)
B «+ basis for dense lattice
return B

Algorithm 3 Rec? Input: b € {0,1}, ST, (0, 1)
if b =0 then
m «+ Decode(A,yo)
else
m <+ Decode(A*,y1)
return m

Lossy Encryption from Lattices (Intuition)

Rec(
Input: b € {0,1}

if b = 0 then

B <« basis for sparse lattice
else

B < basis for dense lattice
return B

But is it lossy... enough?

Send
Input: B, mg, my € {0,1}"

Yo < Encode(A(B), o, mp)
y1 + Encode(A*(B), o, my)
return (yo, y1)

Rec(?
Input: b € {0,1}, B, yo, V1
if b = 0 then
m < Decode(A,)
else
m <« Decode(A*,y;)
return m

Lossy Encryption from Lattices (Intuition)

Rec(
Input: b € {0,1} L.
- But is it lossy... enough?
if b = 0 then)
B <« basis for sparse lattice N L
else DR Y ””«' . . 1 .
B « basis for dense lattice / N E :
return B B —— S S
Send
Input: B, mg, my € {0,1}"
Yo < Encode(A(B), o, mp) A A*

y1 + Encode(A*(B), o, my)
return (o, V1)

Rec(?
Input: b € {0,1}, B, yo, V1
if b = 0 then
m < Decode(A,)
else
m <« Decode(A*,y;)
return m

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"

- Ideals of R embed into Z" as a lattice under the coefficient embedding

Oc.
n—1
oc (Z a;X’) — (Qo,...,0an—1)
i=0

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"
- Ideals of R embed into Z" as a lattice under the coefficient embedding
Oc.
n—1
oc (Z a,X’) — (Qo,...,0an—1)
i=0

- Given a matrix B € Rg*™, define the g-ary module lattice

Ag(B) := {x € R™ : x = B'y mod g,y € R*}

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"

- Ideals of R embed into Z" as a lattice under the coefficient embedding

Oc.
n—1
oc (Z a,X’) — (Qo,...,0an—1)
i=0
- Given a matrix B € Rg*™, define the g-ary module lattice
Ag(B) := {x € R" : x = B'y mod q,y € R'}

- Fact: for g-ary module lattice Aq over R of dimension n,

/\W(Aq) =)‘2(/\@) ==)\N(Aq)

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"

- Ideals of R embed into Z" as a lattice under the coefficient embedding

Oc.
n—1
oc (Z a,X’) — (Qo,...,0an—1)
i=0
- Given a matrix B € Rg*™, define the g-ary module lattice
Ag(B) := {x € R" : x = B'y mod q,y € R'}

- Fact: for g-ary module lattice Aq over R of dimension n,

/\W(Aq) =)‘2(/\@) ==)\N(Aq)

Module Lattices

- Let R = Z[X]/(X" + 1) for n = 2"

- Ideals of R embed into Z" as a lattice under the coefficient embedding

Oc.
n—1
oc (Z a,X’) — (Qo,...,0an—1)
i=0
- Given a matrix B € Rg*™, define the g-ary module lattice
Ag(B) := {x € R" : x = B'y mod q,y € R'}

- Fact: for g-ary module lattice Aq over R of dimension n,

/\W(Aq) =)‘2(/\@) ==)\N(Aq)

1

Lossy Encryption from Lattices

Algorithm 4 Rec” Algorithm 5 Send
Input: b € {0,1} Input: B, mo, my € {0,1}"
if b=0then X+ Rg
B « basis for sparse (R-module) yo < Encode(Aq(B),x)
lattice r« {0,1}*
else mask «+ Ext(r,x)
B « basis for dense (R-module) o < mo @ mask
lattice y1 <= Encode(A;(B), m1)
return B return (yo,r, o, Y1)

Algorithm 6 Rec® Input: b € {0, 1}, B, (Yo, I, 10, V1)

if b = 0 then
x < Decode(A,yo)
mask «+ Ext(r,x)
m < mask & po
else
m, < Decode(A*,y1)
return m

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Hoo (X | y = Encode(Aq(B),X)) > n
2. my is statistically hidden by encoding

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Hoo (X | y = Encode(Aq(B),X)) > n
2. my is statistically hidden by encoding

We use known results on Gaussian measure over lattices

po(A) = 3 =M/’

VEA

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Hoo (X | y = Encode(Aq(B),X)) > n
2. my is statistically hidden by encoding

We use known results on Gaussian measure over lattices

po(A) = 3 =M/’

VEA
The smoothing parameter 7. of a lattice A is defined

Ne(A) ;== min{o € R: p1,5(N") <1+ €}

Theorem (Lyubashevsky-Peikert-Regev'13)
Let D, denote the Gaussian distribution with parameter o. If o > qne(A*(B)),
and x < DT, then

BX ~a U(RE)

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Heo (X | Yo = Encode(Aq(B),x)) > n
2. my is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D, denote the Gaussian distribution with parameter o. If o > qne(A*(B)),
and x < DT, then
BX ~a U(RE)

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Heo (X | Yo = Encode(Aq(B),x)) > n
2. my is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)
Let D, denote the Gaussian distribution with parameter o. If o > qne(A*(B)),
and x < DT, then

BX ~a U(RE)

On the one hand, if A(B) has no short vectors, then n.(A*) is small —
encode my by Bx + m; for x ~ Dy and o > gne(A*(B))

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Heo (X | Yo = Encode(Aq(B),x)) > n
2. my is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)
Let D, denote the Gaussian distribution with parameter o. If o > qne(A*(B)),
and x < DT, then

BX ~a U(RE)

On the one hand, if A(B) has no short vectors, then n.(A*) is small —
encode my by Bx + m; for x ~ Dy and o > gne(A*(B))

Proof Techniques

Need to show that either

1. mo is statistically hidden, so Heo (X | Yo = Encode(Aq(B),x)) > n
2. my is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)
Let D, denote the Gaussian distribution with parameter o. If o > qne(A*(B)),
and x < DT, then

BX ~a U(RE)

On the one hand, if A(B) has no short vectors, then n.(A*) is small —
encode my by Bx + m; for x ~ Dy and o > gne(A*(B))

On the other hand, if A(B) has at least one short vector, it has n of them. So
Heo(X | Yo = Encode(Aq(B),Xx)) > n

Case 1: A has at least n short vectors

Encode(B, m):

“ X R§

Case 1: A has at least n short vectors

Encode(B, m):
“ X R§

c e < DRm,o-

Case 1: A has at least n short vectors

Encode(B, m):
L
* X<+ Ry

c e < DRm,o-

-y« B'x+e mod g

Case 1: A has at least n short vectors

Encode(B, m):
© X+ RE
c e < DRm,o-
-y« B'x+e mod g

In this case, we'll show
Hoo(x|y) 2 n

Case 1: A has at least n short vectors

Encode(B, m):
© X+ RE
c e < DRm,o-
-y« B'x+e mod g

In this case, we'll show
Hoo(x|y) 2 n

Case 1: A has at least n short vectors

Encode(B, m):
© X+ RE
c e < DRm,o-
-y« B'x+e mod g

In this case, we'll show
Hoo(x|y) 2 n

Case 1: A has at least n short vectors

Encode(B, m):
© X+ RE
c e < DRm,o-
-y« B'x+e mod g

In this case, we'll show
Hoo(x|y) 2 n

Case 1: A has at least n short vectors

Proof idea (following BD"18):

- Mostly likely x given y is the one that

Encode(B, m) minimizes e

TX Ry o 4
- Means closest lattice point to y is B'x

- So e € V(A(B))
- But if A(B) has many short vectors,
Prle € V(A(B))] can't be too large

- Can show Pr[e € V(A(B))] down to 27" and
SO Hoo(X | Y) >3n/2

. e(*DRm’O.
-y« B'x+e mod g

In this case, we'll show
Hoo(x|y) 2 n

- Efficient statistically sender private oblivious transfer from R-module
lattices

- Used structure of R-module lattices to get improvements in efficiency
above and beyond what is standard when moving to the algebraically
structured lattice setting.

- We get O(log A) communication overhead for messages of length A. Is
O(1) possible?

