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Oblivious Transfer

• Oblivious Transfer (OT) [Rabin’81] is complete for secure multi-party
computation (MPC) [Kilian’88]

• Allows a Receiver to receive one of two messages from a Sender
without the Sender learning which message was sent, and without the
Receiver learning anything about the other message.
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2-Round OT Definitions

Correctness
An OT = (Rec(1), Send,Rec(2)) protocol is correct if for any pair of messages
m0,m1 and bit β ∈ {0, 1},

Pr[Rec(2)(Send(m0,m1,Rec(1)(β))) = mβ ] ≥ 1− ϵ

for some negligible function ϵ(n) = n−ω(1).

Statistical sender privacy (SSP)

An OT = (Rec(1), Send,Rec(2)) protocol is statistically sender private if for any
receiver message σ, there exists a bit b, such that for any pair of messages
(m0,m1) the two distributions

{Send(m0,m1, σ)} ≈∆ {Send(mb,mb, σ)}

are statistically close.
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2-Round OT Definitions

Computational receiver privacy

An OT = (Rec(1), Send,Rec(2)) protocol is computationally receiver private if
the two distributions

Rec(1)(1) ≈c Rec(1)(0)

are computationally indistinguishable.

Statistical sender privacy (SSP)
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Prior Work

• SSP OT from Decisional Diffie Hellman [Naor-Pinkas’01], Quadratic
Residuosity [Halevi-Kalai’12]

• [Peikert-Vaikuntanathan-Waters’08] gave a universally composable
(UC-secure) lattice-based OT protocol

• [Brakerski-Döttling’18] gave first SSP OT protocol from lattice
assumptions

• SSP OT from compressible fully-homomorphic encryption
[Gentry-Halevi’19] [Brakerski-Döttling-Garg-Malavolta’19]
[Badrinarayanan-Garg-Ishai-Sahai-Wadia’17]
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SSP OT from Lossy Encryption [PVW’08, BD’18]
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Lattice Defs

• A lattice is a discrete additive subgroup of Rm

• Given a basis B ∈ Rn×m, define

Λ(B) := {Btz : z ∈ Zn}

• The dual lattice Λ∗ is defined

Λ∗ := {x ∈ Rm : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}

0Image credit: Oded Regev



Lattice Defs

• A lattice is a discrete additive subgroup of Rm

• Given a basis B ∈ Rn×m, define

Λ(B) := {Btz : z ∈ Zn}

• The dual lattice Λ∗ is defined

Λ∗ := {x ∈ Rm : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}

0Image credit: Oded Regev



Lattice Defs

• A lattice is a discrete additive subgroup of Rm

• Given a basis B ∈ Rn×m, define

Λ(B) := {Btz : z ∈ Zn}

• The dual lattice Λ∗ is defined

Λ∗ := {x ∈ Rm : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}

0Image credit: Oded Regev



Lattice Defs

• A lattice is a discrete additive subgroup of Rm

• Given a basis B ∈ Rn×m, define

Λ(B) := {Btz : z ∈ Zn}

• The dual lattice Λ∗ is defined

Λ∗ := {x ∈ Rm : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}

0Image credit: Oded Regev



Lossy Encryption from Lattices (Intuition)

Low relative noise

Moderate noise

Oof...

• Given lattice Λ(B), encode message m ∈ Znq as
follows:

• Use m to select a lattice vector Btm

• Sample e ∼ DZm,σ

• Return perturbed vector Btm+ e

• In a sufficiently sparse lattice with respect to σ,
can efficiently recover m given a short basis B∗

for Λ∗ [Babai’86], [Aharanov-Regev’05],
[Liu-Lyubashevsky-Micciancio’06]

• But for large σ, even maximum likelihood
decoding doesn’t work

0Image credit: Oded Regev
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Lossy Encryption from Lattices (Intuition)

Algorithm 1 Rec(1)

Input: b ∈ {0, 1}
if b = 0 then
B← basis for sparse lattice

else
B← basis for dense lattice

return B

Algorithm 2 Send
Input: B, m0,m1 ∈ {0, 1}n

y0 ← Encode(Λ(B),m0)

y1 ← Encode(Λ∗(B),m1)

return (y0, y1)

Algorithm 3 Rec(2) Input: b ∈ {0, 1}, St, (µ0, µ1)
if b = 0 then
m← Decode(Λ, y0)

else
m← Decode(Λ∗, y1)

return m
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Module Lattices

• Let R = Z[X]/(Xn + 1) for n = 2k

• Ideals of R embed into Zn as a lattice under the coefficient embedding
σc:

σc

(n−1∑
i=0

aiXi
)
7→ (a0, . . . , an−1)

• Given a matrix B ∈ Rℓ×m
q , define the q-ary module lattice

Λq(B) := {x ∈ Rm : x = Bty mod q, y ∈ Rℓ}

• Fact: for q-ary module lattice Λq over R of dimension n,

λ1(Λq) = λ2(Λq) = · · · = λn(Λq)
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Lossy Encryption from Lattices

Algorithm 4 Rec(1)

Input: b ∈ {0, 1}
if b = 0 then
B← basis for sparse (R-module)
lattice

else
B← basis for dense (R-module)
lattice

return B

Algorithm 5 Send
Input: B, m0,m1 ∈ {0, 1}n

x←Rℓ
q

y0 ← Encode(Λq(B), x)
r← {0, 1}ℓ

mask← Ext(r, x)
µ0 ← m0 ⊕ mask
y1 ← Encode(Λ∗q(B),m1)

return (y0, r, µ0, y1)

Algorithm 6 Rec(2) Input: b ∈ {0, 1}, B, (y0, r, µ0, y1)
if b = 0 then
x← Decode(Λ, y0)
mask← Ext(r, x)
m← mask⊕ µ0

else
m1 ← Decode(Λ∗, y1)

return m



Proof Techniques

Need to show that either

1. m0 is statistically hidden, so H∞(x | y = Encode(Λq(B), x)) ≥ n
2. m1 is statistically hidden by encoding

We use known results on Gaussian measure over lattices

ρσ(Λ) :=
∑
v∈Λ

e−π(∥v∥/σ)2

The smoothing parameter ηϵ of a lattice Λ is defined

ηϵ(Λ) := min{σ ∈ R : ρ1/σ(Λ
∗) ≤ 1+ ϵ}

Theorem (Lyubashevsky-Peikert-Regev’13)
Let Dσ denote the Gaussian distribution with parameter σ. If σ > qηϵ(Λ∗(B)),
and x← Dmσ , then

Bx ≈∆ U(Rℓ
q)
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On the one hand, if Λ(B) has no short vectors, then ηϵ(Λ
∗) is small→

encode m1 by Bx+m1 for x ∼ Dσ and σ > qηϵ(Λ∗(B))

On the other hand, if Λ(B) has at least one short vector, it has n of them. So
H∞(x | y0 = Encode(Λq(B), x)) ≥ n
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Case 1: Λ has at least n short vectors

Encode(B,m):
• x←Rℓ

q

• e← DRm,σ

• y← Btx+ e mod q
In this case, we’ll show
H∞(x | y) ≥ n

Proof idea (following BD’18):

• Mostly likely x given y is the one that
minimizes e

• Means closest lattice point to y is Btx
• So e ∈ V(Λ(B))
• But if Λ(B) has many short vectors,
Pr[e ∈ V(Λ(B))] can’t be too large

• Can show Pr[e ∈ V(Λ(B))] down to 2−n and
so H∞(x | y) ≥ 3n/2
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Summary

• Efficient statistically sender private oblivious transfer from R-module
lattices

• Used structure of R-module lattices to get improvements in efficiency
above and beyond what is standard when moving to the algebraically
structured lattice setting.

• We get O(log λ) communication overhead for messages of length λ. Is
O(1) possible?


