Simpler Statistically Sender Private Oblivious Transfer from Ideals of Cyclotomic Integers

Daniele Micciancio, <u>Jessica Sorrell</u> Asiacrypt 2020

University of California, San Diego

• Oblivious Transfer (OT) [Rabin'81] is complete for secure multi-party computation (MPC) [Kilian'88]

- Oblivious Transfer (OT) [Rabin'81] is complete for secure multi-party computation (MPC) [Kilian'88]
- Allows a Receiver to receive one of two messages from a Sender without the Sender learning which message was sent, and without the Receiver learning anything about the other message.

Correctness

An OT = ($\operatorname{Rec}^{(1)}$, Send, $\operatorname{Rec}^{(2)}$) protocol is *correct* if for any pair of messages m_0, m_1 and bit $\beta \in \{0, 1\}$,

 $\Pr[\operatorname{Rec}^{(2)}(\operatorname{Send}(m_0, m_1, \operatorname{Rec}^{(1)}(\beta))) = m_{\beta}] \ge 1 - \epsilon$

for some negligible function $\epsilon(n) = n^{-\omega(1)}$.

Correctness

An OT = ($\operatorname{Rec}^{(1)}$, Send , $\operatorname{Rec}^{(2)}$) protocol is *correct* if for any pair of messages m_0, m_1 and bit $\beta \in \{0, 1\}$,

 $\Pr[\operatorname{Rec}^{(2)}(\operatorname{Send}(m_0, m_1, \operatorname{Rec}^{(1)}(\beta))) = m_\beta] \ge 1 - \epsilon$

for some negligible function $\epsilon(n) = n^{-\omega(1)}$.

Statistical sender privacy (SSP)

An OT = ($\operatorname{Rec}^{(1)}$, Send , $\operatorname{Rec}^{(2)}$) protocol is *statistically sender private* if for any receiver message σ , there exists a bit *b*, such that for any pair of messages (m_0, m_1) the two distributions

```
\{\operatorname{Send}(m_0, m_1, \sigma)\} \approx_{\Delta} \{\operatorname{Send}(m_b, m_b, \sigma)\}
```

are statistically close.

Computational receiver privacy

An $OT = (Rec^{(1)}, Send, Rec^{(2)})$ protocol is *computationally receiver private* if the two distributions

 $\operatorname{Rec}^{(1)}(1) \approx_{c} \operatorname{Rec}^{(1)}(0)$

are computationally indistinguishable.

Statistical sender privacy (SSP)

An OT = ($\operatorname{Rec}^{(1)}$, Send , $\operatorname{Rec}^{(2)}$) protocol is *statistically sender private* if for any receiver message σ , there exists a bit *b*, such that for any pair of messages (m_0, m_1) the two distributions

 $\{\operatorname{Send}(m_0, m_1, \sigma)\} \approx_{\Delta} \{\operatorname{Send}(m_b, m_b, \sigma)\}$

are statistically close.

• SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic Residuosity [Halevi-Kalai'12]

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic Residuosity [Halevi-Kalai'12]
- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable (UC-secure) lattice-based OT protocol

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic Residuosity [Halevi-Kalai'12]
- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable (UC-secure) lattice-based OT protocol
- [Brakerski-Döttling'18] gave first SSP OT protocol from lattice assumptions

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic Residuosity [Halevi-Kalai'12]
- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable (UC-secure) lattice-based OT protocol
- [Brakerski-Döttling'18] gave first SSP OT protocol from lattice assumptions
- SSP OT from compressible fully-homomorphic encryption [Gentry-Halevi'19] [Brakerski-Döttling-Garg-Malavolta'19] [Badrinarayanan-Garg-Ishai-Sahai-Wadia'17]

- SSP OT from Decisional Diffie Hellman [Naor-Pinkas'01], Quadratic Residuosity [Halevi-Kalai'12]
- [Peikert-Vaikuntanathan-Waters'08] gave a universally composable (UC-secure) lattice-based OT protocol
- [Brakerski-Döttling'18] gave first SSP OT protocol from lattice assumptions
- SSP OT from compressible fully-homomorphic encryption [Gentry-Halevi'19] [Brakerski-Döttling-Garg-Malavolta'19] [Badrinarayanan-Garg-Ishai-Sahai-Wadia'17]

Scheme	Modulus q	Receiver Comm. (bits)	Sender Comm. (bits)	Overall Rate	Operations
[BD18]	$\Theta(n^3 \log^{2.5} n \cdot \gamma(n))$	$\Theta(n^2\log^2 n)$	$\Theta(n\log^2 n)$	$\Theta(1/n\log^2 n)$	$\Theta(n^{\omega})$
[DGI ⁺ 19]	$\Theta(n^{2.5})$	$\Theta(n^2\log^2 n)$	$\Theta(n\log n)$	$\Theta(1/n\log^2 n)$	$\Theta(n^3\log n)$
[GH19]	$\varOmega(n^{17.5}\log^{10}n)$	$\Theta(n^2\log^2 n)$	$\Theta(n^2\log n)$	$\Theta(1/n\log^2 n)$	$\varOmega(n^{1+\omega})$
[BDGM19]	$\Theta(n^{2.5}\log^2 n)$	$\Theta(n^2\log^2 n)$	$\Theta(n\log n)$	$\Theta(1/n\log^2 n)$	$\Omega(n^3 \log^2 n)$
This work	$\Theta(n^4\gamma^6(n))$	$\Theta(n\log n)$	$\Theta(n\log n)$	$\Theta(1/\log n)$	$\Theta(n\log n)$

Message preserving

Message preserving

• A *lattice* is a discrete additive subgroup of \mathbb{R}^m

Lattice Defs

- A *lattice* is a discrete additive subgroup of \mathbb{R}^m
- Given a basis $\mathbf{B} \in \mathbb{R}^{n \times m}$, define

 $\Lambda(\mathsf{B}) := \{\mathsf{B}^t \mathsf{z} : \mathsf{z} \in \mathbb{Z}^n\}$

⁰Image credit: Oded Regev

Lattice Defs

- A *lattice* is a discrete additive subgroup of \mathbb{R}^m
- Given a basis $\mathbf{B} \in \mathbb{R}^{n \times m}$, define

$$\Lambda(B) := \{B^t z : z \in \mathbb{Z}^n\}$$

· The dual lattice Λ^* is defined

$$\Lambda^* := \{ \mathbf{x} \in \mathbb{R}^m : \forall \mathbf{y} \in \Lambda, \langle x, y \rangle \in \mathbb{Z} \}$$

⁰Image credit: Oded Regev

Lattice Defs

- A *lattice* is a discrete additive subgroup of \mathbb{R}^m
- Given a basis $\mathbf{B} \in \mathbb{R}^{n \times m}$, define

$$\Lambda(B) := \{B^t z : z \in \mathbb{Z}^n\}$$

 \cdot The dual lattice Λ^* is defined

$$\Lambda^* := \{ \mathbf{x} \in \mathbb{R}^m : \forall \mathbf{y} \in \Lambda, \langle x, y \rangle \in \mathbb{Z} \}$$

⁰Image credit: Oded Regev

• Given lattice $\Lambda(B)$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:

⁰Image credit: Oded Regev

- Given lattice $\Lambda(B)$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:
- Use m to select a lattice vector $B^{t}m$

⁰Image credit: Oded Regev

- Given lattice $\Lambda(B)$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:
- Use m to select a lattice vector B^tm
- Sample $\mathbf{e} \sim D_{\mathbb{Z}^m,\sigma}$

⁰Image credit: Oded Regev

- Given lattice $\Lambda(B)$, encode message $m \in \mathbb{Z}_q^n$ as follows:
- Use \boldsymbol{m} to select a lattice vector $\boldsymbol{B}^t\boldsymbol{m}$
- Sample $\mathbf{e} \sim D_{\mathbb{Z}^m,\sigma}$
- Return perturbed vector $\mathbf{B}^t \mathbf{m} + \mathbf{e}$

⁰Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

- Given lattice $\Lambda(\mathbf{B})$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:
- + Use \boldsymbol{m} to select a lattice vector $\boldsymbol{B}^t\boldsymbol{m}$
- Sample $\mathbf{e} \sim D_{\mathbb{Z}^m,\sigma}$
- Return perturbed vector $\mathbf{B}^t \mathbf{m} + \mathbf{e}$
- In a sufficiently sparse lattice with respect to σ, can efficiently recover m given a short basis B* for Λ* [Babai'86], [Aharanov-Regev'05], [Liu-Lyubashevsky-Micciancio'06]

⁰Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

Moderate noise

- Given lattice $\Lambda(B)$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:
- Use m to select a lattice vector $B^{t}m$
- Sample $\mathbf{e} \sim D_{\mathbb{Z}^m,\sigma}$
- + Return perturbed vector $\mathbf{B}^t\mathbf{m} + \mathbf{e}$
- In a sufficiently sparse lattice with respect to σ, can efficiently recover m given a short basis B* for Λ* [Babai'86], [Aharanov-Regev'05], [Liu-Lyubashevsky-Micciancio'06]
- But for large σ, even maximum likelihood decoding doesn't work

⁰Image credit: Oded Regev

Lossy Encryption from Lattices (Intuition)

Moderate noise

- Given lattice $\Lambda(B)$, encode message $\mathbf{m} \in \mathbb{Z}_q^n$ as follows:
- Use m to select a lattice vector $B^{t}m$
- Sample $\mathbf{e} \sim D_{\mathbb{Z}^m,\sigma}$
- Return perturbed vector $\mathbf{B}^t\mathbf{m} + \mathbf{e}$
- In a sufficiently sparse lattice with respect to σ, can efficiently recover m given a short basis B* for Λ* [Babai'86], [Aharanov-Regev'05], [Liu-Lyubashevsky-Micciancio'06]
- But for large σ , even maximum likelihood decoding doesn't work

⁰Image credit: Oded Regev

Algorithm 1 Rec ⁽¹⁾	Algorithm 2 Send	
Input: $b \in \{0, 1\}$	Input: B , $m_0, m_1 \in \{0, 1\}^n$	
if $b = 0$ then	$\mathbf{y}_{0} \leftarrow Encode(\Lambda(B), m_{0})$	
$B \leftarrow basis for sparse lattice$	$\mathbf{y}_1 \leftarrow Encode(\Lambda^*(\mathbf{B}), m_1)$	
else	return (y_0, y_1)	
$B \leftarrow basis for dense lattice$		
return B		

Algorithm 3 Rec⁽²⁾ Input: $b \in \{0, 1\}$, ST, (μ_0, μ_1)

```
\begin{array}{l} \text{if } b = 0 \text{ then} \\ m \leftarrow \mathsf{Decode}(\Lambda, \mathsf{y}_0) \\ \text{else} \\ m \leftarrow \mathsf{Decode}(\Lambda^*, \mathsf{y}_1) \\ \text{return } m \end{array}
```

 $\begin{array}{l} \operatorname{Rec}^{(1)} \\ \operatorname{Input:} b \in \{0, 1\} \\ \hline \\ \text{if } b = 0 \text{ then} \\ \\ \text{B} \leftarrow \text{ basis for sparse lattice} \\ \\ \text{else} \\ \\ \text{B} \leftarrow \text{ basis for dense lattice} \\ \\ \text{return } \\ \text{B} \end{array}$

But is it lossy... enough?

Send

Input: **B**, $m_0, m_1 \in \{0, 1\}^n$

 $\begin{array}{l} \mathsf{y}_0 \leftarrow \mathsf{Encode}(\Lambda(\mathsf{B}), \sigma, m_0) \\ \mathsf{y}_1 \leftarrow \mathsf{Encode}(\Lambda^*(\mathsf{B}), \sigma, m_1) \\ \mathsf{return} \ (\mathsf{y}_0, \mathsf{y}_1) \end{array}$

Rec⁽²⁾

Input: $b \in \{0, 1\}, B, y_0, y_1$

if b = 0 then $m \leftarrow \text{Decode}(\Lambda, y_0)$ else

 $m \leftarrow \mathsf{Decode}(\Lambda^*, y_1)$

return m

Rec ⁽¹⁾ Input: $b \in \{0, 1\}$	Put is it lossy onough?
$\begin{array}{l} \text{if } b = 0 \text{ then} \\ B \leftarrow \text{ basis for sparse lattice} \\ \text{else} \\ B \leftarrow \text{ basis for dense lattice} \\ \text{return } B \end{array}$	$\begin{array}{c} & & \\$
Send Input: B , $m_0, m_1 \in \{0, 1\}^n$	x
$ \begin{array}{l} \mathbf{y}_0 \leftarrow Encode(\Lambda(\mathbf{B}),\sigma,m_0) \\ \mathbf{y}_1 \leftarrow Encode(\Lambda^*(\mathbf{B}),\sigma,m_1) \\ return \ (\mathbf{y}_0,\mathbf{y}_1) \end{array} $	Λ Λ*
$Rec^{(2)}$ Input: $b \in \{0, 1\}, B, y_0, y_1$	
$if b = 0 then$ $m \leftarrow Decode(\Lambda, y_0)$	

else

 $m \leftarrow \text{Decode}(\Lambda^*, y_1)$ return m

• Let
$$\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Let $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$
- Ideals of \mathcal{R} embed into \mathbb{Z}^n as a lattice under the *coefficient embedding* σ_c :

$$\sigma_{c}\left(\sum_{i=0}^{n-1}a_{i}X^{i}\right)\mapsto\left(a_{0},\ldots,a_{n-1}\right)$$

- Let $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$
- Ideals of \mathcal{R} embed into \mathbb{Z}^n as a lattice under the *coefficient embedding* σ_c :

$$\sigma_{c}\left(\sum_{i=0}^{n-1}a_{i}X^{i}\right)\mapsto\left(a_{0},\ldots,a_{n-1}\right)$$

• Given a matrix $\mathbf{B} \in \mathcal{R}_q^{\ell \times m}$, define the *q*-ary module lattice

$$\Lambda_q(\mathsf{B}) := \{\mathsf{x} \in \mathcal{R}^m : \mathsf{x} = \mathsf{B}^t \mathsf{y} \bmod q, \mathsf{y} \in \mathcal{R}^\ell\}$$

- Let $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$
- Ideals of \mathcal{R} embed into \mathbb{Z}^n as a lattice under the *coefficient embedding* σ_c :

$$\sigma_{c}\left(\sum_{i=0}^{n-1}a_{i}X^{i}\right)\mapsto\left(a_{0},\ldots,a_{n-1}\right)$$

• Given a matrix $\mathbf{B} \in \mathcal{R}_q^{\ell \times m}$, define the *q*-ary module lattice

$$\Lambda_q(\mathsf{B}) := \{\mathsf{x} \in \mathcal{R}^m : \mathsf{x} = \mathsf{B}^t \mathsf{y} \bmod q, \mathsf{y} \in \mathcal{R}^\ell\}$$

• Fact: for q-ary module lattice Λ_q over \mathcal{R} of dimension n,

$$\lambda_1(\Lambda_q) = \lambda_2(\Lambda_q) = \cdots = \lambda_n(\Lambda_q)$$

- Let $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$
- Ideals of \mathcal{R} embed into \mathbb{Z}^n as a lattice under the *coefficient embedding* σ_c :

$$\sigma_{c}\left(\sum_{i=0}^{n-1}a_{i}X^{i}\right)\mapsto\left(a_{0},\ldots,a_{n-1}\right)$$

• Given a matrix $\mathbf{B} \in \mathcal{R}_q^{\ell \times m}$, define the *q*-ary module lattice

$$\Lambda_q(\mathsf{B}) := \{\mathsf{x} \in \mathcal{R}^m : \mathsf{x} = \mathsf{B}^t \mathsf{y} \bmod q, \mathsf{y} \in \mathcal{R}^\ell\}$$

• Fact: for q-ary module lattice Λ_q over \mathcal{R} of dimension n,

$$\lambda_1(\Lambda_q) = \lambda_2(\Lambda_q) = \cdots = \lambda_n(\Lambda_q)$$

- Let $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^k$
- Ideals of \mathcal{R} embed into \mathbb{Z}^n as a lattice under the *coefficient embedding* σ_c :

$$\sigma_{c}\left(\sum_{i=0}^{n-1}a_{i}X^{i}\right)\mapsto\left(a_{0},\ldots,a_{n-1}\right)$$

• Given a matrix $\mathbf{B} \in \mathcal{R}_q^{\ell \times m}$, define the *q*-ary module lattice

$$\Lambda_q(\mathsf{B}) := \{\mathsf{x} \in \mathcal{R}^m : \mathsf{x} = \mathsf{B}^t \mathsf{y} \bmod q, \mathsf{y} \in \mathcal{R}^\ell\}$$

• Fact: for q-ary module lattice Λ_q over \mathcal{R} of dimension n,

$$\lambda_1(\Lambda_q) = \lambda_2(\Lambda_q) = \cdots = \lambda_n(\Lambda_q)$$

Lossy Encryption from Lattices

Algorithm 4 Rec ⁽¹⁾	Algorithm 5 Send	
Input: <i>b</i> ∈ {0, 1}	Input: B , $m_0, m_1 \in \{0, 1\}^n$	
if $b = 0$ then	$x \leftarrow \mathcal{R}^\ell_q$	
$B \leftarrow basis for sparse (R-module)$	$y_0 \leftarrow Encode(\Lambda_q(B), x)$	
lattice	$r \leftarrow \{0,1\}^\ell$	
else	$mask \leftarrow Ext(r, x)$	
$B \leftarrow basis for dense (R-module)$	$\mu_{0} \leftarrow m_{0} \oplus mask$	
lattice	$\mathbf{y}_1 \leftarrow Encode(\mathbf{\Lambda}_q^*(\mathbf{B}), m_1)$	
return B	return $(\mathbf{y}_0, \mathbf{r}, \mu_0, \mathbf{y}_1)$	

Algorithm 6 Rec⁽²⁾ Input: $b \in \{0, 1\}$, B, (y_0, r, μ_0, y_1)

```
\label{eq:constraints} \begin{array}{l} \text{if } b = 0 \text{ then} \\ x \leftarrow \text{Decode}(\Lambda, y_0) \\ \text{mask} \leftarrow \text{Ext}(r, x) \\ m \leftarrow \text{mask} \oplus \mu_0 \\ \text{else} \\ m_1 \leftarrow \text{Decode}(\Lambda^*, y_1) \\ \text{return } m \end{array}
```

1. m_0 is statistically hidden, so $H_\infty(\mathbf{x} \mid \mathbf{y} = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$

2. m_1 is statistically hidden by encoding

1. m_0 is statistically hidden, so $H_\infty(\mathbf{x} \mid \mathbf{y} = \mathsf{Encode}(\Lambda_q(\mathsf{B}), \mathbf{x})) \ge n$

2. m_1 is statistically hidden by encoding

We use known results on Gaussian measure over lattices

$$\rho_{\sigma}(\Lambda) := \sum_{\mathsf{v} \in \Lambda} e^{-\pi(\|\mathsf{v}\|/\sigma)^2}$$

- 1. m_0 is statistically hidden, so $H_\infty(\mathbf{x} \mid \mathbf{y} = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$
- 2. m_1 is statistically hidden by encoding

We use known results on Gaussian measure over lattices

$$\rho_{\sigma}(\Lambda) := \sum_{\mathbf{v} \in \Lambda} e^{-\pi(\|\mathbf{v}\|/\sigma)^2}$$

The smoothing parameter η_ϵ of a lattice Λ is defined

$$\eta_{\epsilon}(\Lambda) := \min\{\sigma \in \mathbb{R} : \rho_{1/\sigma}(\Lambda^*) \le 1 + \epsilon\}$$

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D_{σ} denote the Gaussian distribution with parameter σ . If $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$, and $\mathbf{x} \leftarrow D_{\sigma}^m$, then

 $\mathsf{Bx} \approx_\Delta \mathcal{U}(\mathcal{R}^\ell_q)$

- 1. m_0 is statistically hidden, so $H_{\infty}(\mathbf{x} \mid \mathbf{y}_0 = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$
- 2. m_1 is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D_{σ} denote the Gaussian distribution with parameter σ . If $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$, and $\mathbf{x} \leftarrow D_{\sigma}^m$, then

 $\mathsf{Bx} \approx_\Delta \mathcal{U}(\mathcal{R}^\ell_q)$

- 1. m_0 is statistically hidden, so $H_{\infty}(\mathbf{x} \mid \mathbf{y}_0 = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$
- 2. m_1 is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D_{σ} denote the Gaussian distribution with parameter σ . If $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$, and $\mathbf{x} \leftarrow D_{\sigma}^m$, then

 $\mathsf{Bx} \approx_\Delta \mathcal{U}(\mathcal{R}^\ell_q)$

On the one hand, if $\Lambda(B)$ has no short vectors, then $\eta_{\epsilon}(\Lambda^*)$ is small \rightarrow encode m_1 by $B\mathbf{x} + m_1$ for $\mathbf{x} \sim D_{\sigma}$ and $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$

- 1. m_0 is statistically hidden, so $H_{\infty}(\mathbf{x} \mid \mathbf{y}_0 = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$
- 2. m_1 is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D_{σ} denote the Gaussian distribution with parameter σ . If $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$, and $\mathbf{x} \leftarrow D_{\sigma}^m$, then

 $\mathsf{Bx} \approx_\Delta \mathcal{U}(\mathcal{R}^\ell_q)$

On the one hand, if $\Lambda(B)$ has no short vectors, then $\eta_{\epsilon}(\Lambda^*)$ is small \rightarrow encode m_1 by $B\mathbf{x} + m_1$ for $\mathbf{x} \sim D_{\sigma}$ and $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$

- 1. m_0 is statistically hidden, so $H_{\infty}(\mathbf{x} \mid \mathbf{y}_0 = \mathsf{Encode}(\Lambda_q(\mathbf{B}), \mathbf{x})) \ge n$
- 2. m_1 is statistically hidden by encoding

Theorem (Lyubashevsky-Peikert-Regev'13)

Let D_{σ} denote the Gaussian distribution with parameter σ . If $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$, and $\mathbf{x} \leftarrow D_{\sigma}^m$, then

 $\mathsf{Bx} \approx_{\Delta} \mathcal{U}(\mathcal{R}_q^\ell)$

On the one hand, if $\Lambda(B)$ has no short vectors, then $\eta_{\epsilon}(\Lambda^*)$ is small \rightarrow encode m_1 by $B\mathbf{x} + m_1$ for $\mathbf{x} \sim D_{\sigma}$ and $\sigma > q\eta_{\epsilon}(\Lambda^*(B))$

On the other hand, if $\Lambda(B)$ has at least one short vector, it has *n* of them. So $H_{\infty}(\mathbf{x} \mid \mathbf{y}_0 = \text{Encode}(\Lambda_q(B), \mathbf{x})) \ge n$

 $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$

- $\mathbf{x} \leftarrow \mathcal{R}_q^\ell$ $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$

- $\cdot \mathbf{x} \leftarrow \mathcal{R}_q^\ell$
- $\mathbf{e} \leftarrow D_{\mathcal{R}^m,\sigma}$
- $\cdot \mathbf{y} \leftarrow \mathbf{B}^t \mathbf{x} + \mathbf{e} \mod q$ In this case, we'll show $H_{\infty}(\mathbf{x} \mid \mathbf{y}) \ge n$

Proof idea (following BD'18):

- Mostly likely x given y is the one that minimizes e
- Means closest lattice point to \boldsymbol{y} is $\boldsymbol{B}^t\boldsymbol{x}$
- · So $e \in \mathcal{V}(\Lambda(B))$
- But if $\Lambda(B)$ has many short vectors, $\Pr[e \in \mathcal{V}(\Lambda(B))]$ can't be too large
- Can show $\Pr[\mathbf{e} \in \mathcal{V}(\Lambda(B))]$ down to 2^{-n} and so $H_{\infty}(\mathbf{x} \mid \mathbf{y}) \ge 3n/2$

- Efficient statistically sender private oblivious transfer from $\mathcal{R}\text{-}\mathsf{module}$ lattices
- Used structure of *R*-module lattices to get improvements in efficiency above and beyond what is standard when moving to the algebraically structured lattice setting.
- We get $O(\log \lambda)$ communication overhead for messages of length λ . Is O(1) possible?