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Authenticated Key Exchange (AKE)

A pass: one message sent from P; to P; (or P; to P).

attacks in the later communication.
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Tight Security

Security of a cryptographic Scheme based on a hard Problem.
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PPT algorithm B successfully solves Problem PPT adversary A successfully attacks Scheme
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Security loss factor: L = 5 Advantages:

* smaller elements

e * universal key-length recommendations




Tight Security for AKE
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Loose Security: loss factor at least L = O(uf)

) ) uf can be as large as 230~259]
Tight Security: constant L = 0(1)



Related Works on Tightly Secure AKE

» Explicit authentication
- [GJ18, CRYPTO]: 3-pass protocol in the RO model. Advantages of explicit authentication:
* [BHJ+15, TCC]: 3-pass protocol in the Std. model. detect active attacks immediately.

» Implicit authentication
* [CCG+19, CRYPTO]: 2-pass protocol in the RO model (security loss L = 0(u)).

e [XZM20, CT-RSA]: 2-pass protocol in the RO model.

2-pass AKE scheme with explicit authentication and tight security?
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Security Model for AKE [GJ]18]
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Signed Diffie-Hellman Protocol
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Commitment Problem In Signed DH

Hardness of tight security for signed DH.

Consider the reduction algorithm B and a specific session (i, s).

* B receives a DDH challenge problem (g%, g¥, g%).
* If (g% g”,9%) is embedded into session (i, s), then it cannot be revealed.

* |f not, then B cannot complete the reduction if A chooses (i, s) as target.

Guess the target session (from pf sessions) and embed the DDH problem into it.

= loose security loss L = 0(uf).

* To deal with the “commitment problem”, Gjgsteen and Jager [CRYPTO 2018] added an extra hash
commitment as the first message, resulting in a 3-pass protocol with tight security in the RO model.



Commitment Problem in KEM

Key Encapsulation Mechanism (KEM):
« KEM.Gen:pk = g%, sk =a
« KEM.Encap(pk):K = g*?,C = g°
« KEM.Decap(sk,C): K' = CS¥

Signed DH protocol is actually a KEM + SIG construction.

We need to solve the commitment problem in KEM:
* provide traditional IND-security

* answer reveal queries from A



Our Solution: IND-mCPArevea secure KEM
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IND-mCPA™evea! security: Pr[A wins] = - + negl.



Our Solution; MU-EUF-CMAc°T secure SIG

C A
MU-EUF-CMA®T security
experiment: Fori € [u]: {vk;}
(vk;, sk;) < SIG. Gen

o « SIG. Sign(sk;, m) ) Sign(i,m)
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MU-EUF-CMAC" security: Pr[A wins] = negl.



Our Construction: KEM + SIG
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e \With a tightly IND-mCPArevea secure KEM, the commitment problem is solved, since all
challenge ciphertexts can be

* either served as the final target of A.
* orrevealed to A.

e With a tightly MU-EUF-CMACc°™ secure SIG, we can also handle the corruption queries from
the adversary.

v' KEM: tightly IND-mCPA™ved security = indistinguishability
v SIG: tightly MU-EUF-CMAC°™ security = explicit authentication



Our Construction; KEM + SIG
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* Corrupt: SIG is secure against adaptive corruptions.
Against A's queries (attacks): < Reveal: KEM is secure against adaptive reveals.

* Test: KEM is IND-secure.



Dealing with Replay Attacks

Pl msg - [)]
Nzt
Compared with multi-pass AKE, 2-pass AKE inherently open to replay attacks. @Q\‘@/’
A -

* A stronger security model of AKE:
If a replayed message is accepted by some user, the authentication of AKE is broken.

* We add counters to identify the freshness of messages.

P. P.

l J
ctr; + + (pkkem, ctry, 0y )\

If ctry < ctrj: L
(C, ctry, 07) Else: ctrj = ctr;

Ifctry # ctrj: L <

v" In this way, any replayed attacks can be detected immediately in our 2-pass AKE.



Our Generic Construction

K' « KEM. Decap(skkgm, C)
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v" Perfect Forward Security

v" KCI Resistance (security against key-compromise impersonation attacks)




AKE In the RO model

» Instantiation of KEM
* KEM. Gen: pk = (g*t, g*2), sk = (x4, x5).
KEMstzpn: « KEM.Encap(pk): K = H(pk, C, g*vY , g*2¥),C = g¥
» KEM.Decap((xy,x;),C): K' = H(pk, C,C*1,C*?)
* The IND-mCPA"vead security is based on the twin DH assumption (the CDH assumption).

* Tight security relies on the random self-reducibility.

* Security against reveal queries relies on the decisional oracle 2DH.

» Instantiation of SIG
* SIGppy In [GJ18] (based on the DDH assumption).

We obtain the first 2-pass AKE scheme with explicit authentication and tight security in the RO model.



AKE In the Std. model

> Instantiation of KEM

* KEMpyppg Is derived from the tightly IND-mCCA secure PKE scheme by Han et al.
[CRYPTO 2019].

* IND-mCCA implies IND-mCPAreveal with tight reduction.

> Instantiation of SIG
* SIGyppy In [BHIJ+15] (based on the MDDH assumption).

We obtain the first 2-pass AKE scheme with explicit authentication and tight security in the Std. model.



Comparison

AKE

Comp. (1) Comp. (R) Comm. (I+R) Assumption Sec. Loss #Pass Model
Scheme
[GJ18] 17 17 12+11 DDH 0(1) 3 RO
AKEp 19 18 12+11 DDH 0(1) 2 RO
[BHJ+15] 22 23 11+9 1-LIN=SXDH o) 3 Std.
0 (k?) 0 (k?) (2k% + 4k +5) + (4k + 7) D, -MDDH
AKE, 0001 37 22 /+8 1-LIN=SXDH o) 2 Std.
0(k3) 0 (k3) (k% + 5k + 1) + (4k + 4) Dy, -MDDH




Conclusion

stronger security model
(covers replay attacks)

JL _

tightly secure -
AKE

tightly IND-mCPArevea
KEM

tightly EUF-CMAor
SIG

Instantiations

RO: KEMStZDH

Std KEMMDDH

RO: SIGDDH

Std.; SIGMDDH

Thank you!
Questions?

AKEppy (RO model)

AKEpppy (Std. model)

2-pass
explicit authentication
tight security



