

Two-Pass Authenticated Key Exchange with Explicit Authentication and Tight Security

Xiangyu Liu¹, Shengli Liu¹, Dawu Gu¹, and Jian Weng²

¹Shanghai Jiao Tong University, China ²Jinan University, China

Authenticated Key Exchange (AKE)

Party P_i Party P_i (sk_i) (sk_i) choose r_1 m_1, σ_1 choose r_2 m_2, σ_2 choose r_3 m_3, σ_3 . . . choose r_t m_t, σ_t 1 ∜ k_i k_i

A pass: one message sent from P_i to P_j (or P_j to P_i).

Correctness. $k_i = k_j$.

D Security.

- Indistinguishability. the session key is pseudorandom.
- Authentication.
- **Explicit authentication**: detects active attacks during the execution of AKE.

- **Implicit authentication**: detects active attacks in the later communication.

Tight Security

Security of a cryptographic Scheme based on a hard Problem.

PPT algorithm \mathcal{B} successfully solves **Problem** (with probability ϵ')

Security loss factor: $L = \frac{\epsilon}{\epsilon'}$ Tight Security: constant L = O(1) PPT adversary \mathcal{A} successfully attacks **Scheme** (with probability ϵ)

Advantages:

- smaller elements
- universal key-length recommendations

Tight Security for AKE

Related Works on Tightly Secure AKE

Explicit authentication

- [GJ18, CRYPTO]: 3-pass protocol in the RO model.
- [BHJ+15, TCC]: 3-pass protocol in the Std. model.

Implicit authentication

- [CCG+19, CRYPTO]: 2-pass protocol in the RO model (security loss $L = O(\mu)$).
- [XZM20, CT-RSA]: 2-pass protocol in the RO model.

2-pass AKE scheme with explicit authentication and tight security?

Advantages of explicit authentication:

detect active attacks immediately.

Security Model for AKE [GJ18]

 \mathcal{A} $(\pi_1^1, ..., \pi_i^S, ..., \pi_u^\ell)$ **Send**(*i*, *s*, *msg*) response *msg*' * π_i^t π_i^s Indistinguishability: **Corrupt**(*i*) $\Pr[b' = b_{i^*}^{s^*}] = \frac{1}{2} + \text{negl.}$ P_i 's long-term sk_i \mathcal{C} simulates their communication via \mathcal{A} 's **send** queries μ : max number of users. **RegisterCorrupt** (i, pk_i) ℓ : max number of executions per user involved. Reveal(i, s)session key k_i^s π_i^s : the (simulated) *s*-th of user P_i . **test**(*i*, *s*) independent random bit b_i^s k_i^s /random key

*i**, *s**, *b*′

 $(\mathcal{A}$'s guess of $b_{i^*}^{s^*}$ for target session (i^*, s^*)

Signed Diffie-Hellman Protocol

Party P_i
 (sk_i) Party P_j
 (sk_j) $\sigma_1 \leftarrow SIG. Sign(g^a)$ g^a, σ_1
 g^b, σ_2 $\sigma_2 \leftarrow SIG. Sign(g^a||g^b)$ \Downarrow
 $k_i = g^{ab}$ \Downarrow
 $k_j = g^{ab}$

Commitment Problem in Signed DH

Hardness of tight security for signed DH.

Consider the reduction algorithm \mathcal{B} and a specific session (i, s).

- \mathcal{B} receives a DDH challenge problem (g^x, g^y, g^z) .
- If (g^x, g^y, g^z) is embedded into session (i, s), then it cannot be revealed.
- If not, then \mathcal{B} cannot complete the reduction if \mathcal{A} chooses (i, s) as target.

Guess the target session (from $\mu\ell$ sessions) and embed the DDH problem into it.

 \Rightarrow loose security loss $L = O(\mu \ell)$.

• To deal with the "commitment problem", Gjøsteen and Jager [CRYPTO 2018] added an extra hash commitment as the first message, resulting in a **3-pass** protocol with tight security in the RO model.

Commitment Problem in KEM

Key Encapsulation Mechanism (KEM):

- KEM. Gen: $pk = g^a$, sk = a
- KEM. Encap(pk): $K = g^{ab}$, $C = g^b$
- KEM. Decap(sk, C): $K' = C^{sk}$

Signed DH protocol is actually a **KEM + SIG** construction.

We need to solve the **commitment problem in KEM**:

- provide traditional IND-security
- answer reveal queries from ${\cal A}$

Our Solution: IND-mCPA^{reveal} secure KEM

IND-mCPA ^{reveal} security	${\mathcal C}$		${\mathcal A}$		
experiment:	For $i \in [\mu]$: $(pk_i, sk_i) \leftarrow \text{KEM. Gen}$	{ <i>pk</i> _{<i>i</i>} }			
	$(K_0, C) \leftarrow \text{KEM. Encap}, K_1 \leftarrow \$$ $\beta \leftarrow \{0,1\}$ add (i, C, β) to CList	$\underbrace{Encap(i)}_{K_{\beta}, C}$	(challenge ciphertexts)		
	$K' \leftarrow \text{KEM. Decap}(sk_i, C')$ add (i, C') to RList	$\frac{\text{Reveal}(i, C')}{K'}$			
	$\mathcal{A} \text{ wins if } \exists (i^*, C^*, \beta) \in \text{CList} \\ s. t. (i^*, C^*) \notin \text{RList } \land \beta' = \beta$	<i>i</i> *, C*, β′			

Our Solution: MU-EUF-CMAcorr secure SIG

MU-EUF-CMA ^{corr} security	${\mathcal C}$	c	A
experiment:	For $i \in [\mu]$: $(vk_i, sk_i) \leftarrow SIG. Gen$	$\{vk_i\}$	
	$\sigma \leftarrow SIG. Sign(sk_i, m)$ add (m, σ) to S_i	$\frac{Sign(i,m)}{\sigma}$	
		Corrupt(<i>i</i>)	
	add (i, C') to S^{corr}	$\xrightarrow{sk_i}$	
	$\mathcal{A} \text{ wins if } i^* \notin S^{\text{corr}} \wedge (m^*, \cdot) \notin S_{i^*}$ $\wedge \text{SIG.Ver}(vk_{i^*}, m^*, \sigma^*) = 1$	<i>i</i> *, <i>m</i> *, <i>σ</i> *	

MU-EUF-CMA^{corr} security: Pr[A wins] = negl.

Our Construction: KEM + SIG

- With a tightly IND-mCPA^{reveal} secure KEM, the commitment problem is solved, since all challenge ciphertexts can be
 - either served as the final target of \mathcal{A} .
 - or revealed to \mathcal{A} .
- With a tightly MU-EUF-CMA^{corr} secure SIG, we can also handle the corruption queries from the adversary.
 - ✓ KEM: tightly IND-mCPA^{reveal} security → indistinguishability
 - ✓ SIG: tightly MU-EUF-CMA^{corr} security → explicit authentication

Our Construction: KEM + SIG

• **Corrupt**: SIG is secure against adaptive corruptions.

Against \mathcal{A} 's queries (attacks):

- **Reveal**: KEM is secure against adaptive reveals.
- Test: KEM is IND-secure.

Dealing with Replay Attacks

Compared with multi-pass AKE, 2-pass AKE inherently open to replay attacks.

 $P_i \xrightarrow{\text{msg}} P_j$ $\xrightarrow{replay} \xrightarrow{replay} \xrightarrow{re$

• A stronger security model of AKE:

If a replayed message is accepted by some user, the authentication of AKE is broken.

• We add counters to identify the freshness of messages.

✓ In this way, any replayed attacks can be detected immediately in our 2-pass AKE.

Our Generic Construction

✓ Perfect Forward Security

✓ KCI Resistance (security against key-compromise impersonation attacks)

AKE in the RO model

Instantiation of KEM

- KEM. Gen: $pk = (g^{x_1}, g^{x_2}), sk = (x_1, x_2).$
- KEM_{st2DH}: KEM. Encap(pk): $K = H(pk, C, g^{x_1y}, g^{x_2y}), C = g^y$
 - KEM. $Decap((x_1, x_2), C): K' = H(pk, C, C^{x_1}, C^{x_2})$
- The IND-mCPA^{reveal} security is based on the twin DH assumption (the CDH assumption).
- Tight security relies on the random self-reducibility.
- Security against reveal queries relies on the decisional oracle 2DH.

Instantiation of SIG

• SIG_{DDH} in [GJ18] (based on the DDH assumption).

We obtain the first **2-pass** AKE scheme with **explicit authentication** and **tight security** in the RO model.

AKE in the Std. model

Instantiation of KEM

- KEM_{MDDH} is derived from the tightly IND-mCCA secure PKE scheme by Han et al. [CRYPTO 2019].
- IND-mCCA implies IND-mCPA^{reveal} with tight reduction.

Instantiation of SIG

• SIG_{MDDH} in [BHJ+15] (based on the MDDH assumption).

We obtain the first **2-pass** AKE scheme with **explicit authentication** and **tight security** in the Std. model.

Comparison

AKE Scheme	Comp. (I)	Comp. (R)	Comm. (I+R)	Assumption	Sec. Loss	#Pass	Model
[GJ18]	17	17	12+11	DDH	0(1)	3	RO
AKE _{DDH}	19	18	12+11	DDH	0(1)	2	RO
[BHJ+15]	22 $O(k^2)$	23 $O(k^2)$	$11+9$ $(2k^2 + 4k + 5) + (4k + 7)$	1-LIN=SXDH D_k -MDDH	$O(\lambda)$	3	Std.
AKE _{MDDH}	37 O(k ³)	22 O(k ³)	7+8 $(k^2 + 5k + 1) + (4k + 4)$	1-LIN=SXDH <i>D_k-</i> MDDH	0(λ)	2	Std.

Conclusion

- 2-pass
- explicit authentication
- tight security

Thank you! **Questions?**