Amplifying the Security of Functional Encryption, Unconditionally

Aayush Jain

Alexis Korb

Nathan Manohar UCLA Amit Sahai UCLA

FE Amplification

- Fundamental question
- New sources of hardness may lead to weak primitives → amplify to fully secure
- Results can be *unconditional*

p-secure FE = Adversary
can distinguish between
Enc(m₀) and Enc(m₁)
with probability at most p

FE Amplification

- Fundamental question
- New sources of hardness may lead to weak primitives → amplify to fully secure
- Results can be *unconditional*

- [AJS18, AJL+19] Amplify FE from <u>(1 1/poly(λ))</u>-security to full security assuming <u>subexponentially secure LWE</u>.
 - Preserves compactness and sublinearity
 - Polynomial and subexponential versions
- No other FE amplification results known

- [AJS18, AJL+19] Amplify FE from <u>(1 1/poly(λ))</u>-security to full security assuming <u>subexponentially secure LWE</u>.
 - Preserves compactness and sublinearity
 - Polynomial and subexponential versions
- No other FE amplification results known

Can we get FE amplification from weaker assumptions?

- [AJS18, AJL+19] Amplify FE from <u>(1 1/poly(λ))</u>-security to full security assuming <u>subexponentially secure LWE</u>.
 - Preserves compactness and sublinearity
 - Polynomial and subexponential versions
- No other FE amplification results known

Can we get FE amplification from weaker assumptions?

YES!

- [AJS18, AJL+19] Amplify FE from <u>(1 1/poly(λ))</u>-security to full security assuming <u>subexponentially secure LWE</u>.
 - Preserves compactness and sublinearity
 - Polynomial and subexponential versions
- No other FE amplification results known

Our Work

- Amplify FE from $\underline{\varepsilon}$ -security for any <u>constant $\varepsilon \in (0,1)$ </u> to full security, <u>unconditionally</u>.
 - Preserves compactness
 - Polynomial and subexponential versions

ε -secure FE -> fully secure FE

1. Constant ε -> arbitrarily small constant ε'

2. Small constant ε' -> fully secure

ε -secure FE -> fully secure FE

- 1. Constant ε -> arbitrarily small constant ε'
 - Uses nesting technique (NEW!)

Nested PKE Amplification

For any constant $\varepsilon \in (0,1)$ and ε -secure PKE scheme *PKE*, the PKE scheme *PKE** obtained by composing *PKE* with itself is $\varepsilon^2 + negl(\lambda) - secure$.

2. Small constant ε' -> fully secure

ε -secure FE -> fully secure FE

- 1. Constant ε -> arbitrarily small constant ε'
 - Uses nesting technique (NEW!)

Nested PKE Amplification

For any constant $\varepsilon \in (0,1)$ and ε -secure PKE scheme *PKE*, the PKE scheme *PKE** obtained by composing *PKE* with itself is $\varepsilon^2 + negl(\lambda) - secure$.

- 2. Small constant ε' -> fully secure
 - Parallel repetition
 - Set homomorphic secret sharing (NEW!)

ε -secure FE -> fully secure FE

- 1. Constant ε -> arbitrarily small constant ε'
 - Uses nesting technique (NEW!)

Nested PKE Amplification

For any constant $\varepsilon \in (0,1)$ and ε -secure PKE scheme *PKE*, the PKE scheme *PKE** obtained by composing *PKE* with itself is $\varepsilon^2 + negl(\lambda) - secure$.

- 2. Small constant ε' -> fully secure
 - Parallel repetition
 - Set homomorphic secret sharing (NEW!)

Nested FE

$CT \leftarrow Enc(MSK_1, m)$

$SK_{f} \leftarrow KeyGen(MSK_{1}, f)$

Nested FE

$CT \leftarrow Enc(MSK_2, Enc(MSK_1, m))$

 $SK_{f} \leftarrow KeyGen(MSK_{2}, Dec(KeyGen(MSK_{1}, f), *))$

Nested FE

$CT \leftarrow Enc(MSK_2, Enc(MSK_1, m))$

 $SK_{f} \leftarrow KeyGen(MSK_{2}, Dec(KeyGen(MSK_{1}, f), *))$

Amplification of Nested Primitives

Intuition: If one layer is secure, then the whole thing is secure

Expectation: Amplify security from $\varepsilon \rightarrow \varepsilon^2$

Nested PKE

 $CT \leftarrow Enc(PK_2, Enc(PK_1, m))$ $SK \leftarrow (SK_1, SK_2)$

Security: Enc(m) \approx_c Enc(0)

Weak indistinguishability over uniform randomness

Weak indistinguishability Strong indistinguishability over uniform randomness over hardcore measures Randomness Randomness Randomness Randomness \approx_c density() = - = density() = 1 - ε ε - distinguishable

Weak indistinguishability over uniform randomness

Hardcore measures depend on the input to the encryption.

Each layer

ε-secure

Apply hardcore lemma

Apply hardcore lemma

Apply hardcore lemma

Reduction First Attempt

Reduction First Attempt

Reduction First Attempt which is either 1. Receive **Given** or 1 \approx_c 2. Sample from to compute ? **Want** to get either $pprox_c$ or

Reduction First Attempt

<u>Problems</u>

1. might not be efficiently samplable or computable.

Reduction First Attempt

Problems

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Weak indistinguishability over uniform randomness

Hardcore measures depend on the input to the encryption.

Reduction First Attempt

Problems

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 1: Efficient Simulation Problems

1. [TTV09, Skó15] (informal) Every high density measure can be "efficiently" simulated

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input <u>Problems</u>

1. **?** might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input

Key Observation: Efficiency of simulator is only dependent on the output of f

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input Problems

2. Use commitment of hidden information.

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input

2. Use commitment of hidden information.

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input <u>Problems</u>

2. Use commitment of hidden information. Sim just as efficient! Brute force compute $\} \rightarrow$ Sim(\approx_c Brute force compute }--; Sim(\approx_c

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input

2. Use commitment of hidden information.

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input Problems

2. Use commitment of hidden information. Change commitment to zero.

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Fixing Problem 2: Independence from Input <u>Problems</u>

Result: Simulate hardcore measures.

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Reduction First Attempt

Problems

1. might not be efficiently samplable or computable.

2. Hardcore measure depends on whether we have

Amplification of Nested Primitives

Intuition: If one layer is secure, then the whole thing is secure

Result: Amplify security from $\varepsilon \rightarrow \varepsilon^2 + negl(\lambda)$

Summary

- Amplify FE from ε -security for any constant $\varepsilon \in (0,1)$ to full security, <u>unconditionally</u>.
 - Preserves compactness
- New technique for amplification of nested primitives.
- Introduce set homomorphic secret sharing.

Thank you!