
Amplifying the Security of
Functional Encryption,

Unconditionally

Nathan Manohar
UCLA

Amit Sahai
UCLA

Alexis Korb
UCLA

Aayush Jain
UCLA

(Secret Key) Functional Encryption

f1

Authority

Users

MSK

f2 fn

MSK ← Setup(1λ)
skf ← KeyGen(MSK, f)

[SW05, BSW11, O’N10]

m

(Secret Key) Functional Encryption

f1

Authority

Users

MSK

f2 fn

f1(m) f2(m) fn(m)

Broadcast

MSK ← Setup(1λ)
skf ← KeyGen(MSK, f)
ct ← Enc(MSK, m)
y← Dec(skf, ct)

[SW05, BSW11, O’N10]

m1

FE - Security

m0

f1 fm

If ∀i, fi(m0) = fi(m1),
then

x1 x2 xt

f2Idea: Given skf

and Enc(m),
adversary

should only
learn f(m).

FE FE*

• New sources of hardness may lead to
weak primitives → amplify to fully secure

• Results can be unconditional

• Fundamental question

FE Amplification

m1

FE - Security

m0

f1 fm

If ∀i, fi(m0) = fi(m1),
then

x1 x2 xt

f2Idea: Given skf

and Enc(m),
adversary

should only
learn f(m).

p-secure FE = Adversary
can distinguish between

Enc(m0) and Enc(m1)
with probability at most p

FE FE*

• New sources of hardness may lead to
weak primitives → amplify to fully secure

• Results can be unconditional

• Fundamental question

FE Amplification

• [AJS18, AJL+19] Amplify FE from (1 - 1/poly(λ))-security to full
security assuming subexponentially secure LWE.
• Preserves compactness and sublinearity

• Polynomial and subexponential versions

• No other FE amplification results known

Previous Work

• [AJS18, AJL+19] Amplify FE from (1 - 1/poly(λ))-security to full
security assuming subexponentially secure LWE.
• Preserves compactness and sublinearity

• Polynomial and subexponential versions

• No other FE amplification results known

Previous Work

Can we get FE amplification from
weaker assumptions?

• [AJS18, AJL+19] Amplify FE from (1 - 1/poly(λ))-security to full
security assuming subexponentially secure LWE.
• Preserves compactness and sublinearity

• Polynomial and subexponential versions

• No other FE amplification results known

Previous Work

Can we get FE amplification from
weaker assumptions?

YES!

• [AJS18, AJL+19] Amplify FE from (1 - 1/poly(λ))-security to full
security assuming subexponentially secure LWE.
• Preserves compactness and sublinearity

• Polynomial and subexponential versions

• No other FE amplification results known

Previous Work

• Amplify FE from 𝜀-security for any constant 𝜀 ∈ 0,1 to full security,
unconditionally.
• Preserves compactness

• Polynomial and subexponential versions

Our Work

Two Steps in Amplification
𝜀-secure FE -> fully secure FE

1. Constant 𝜀 -> arbitrarily small constant 𝜀’

2. Small constant 𝜀′-> fully secure

Two Steps in Amplification
𝜀-secure FE -> fully secure FE

1. Constant 𝜀 -> arbitrarily small constant 𝜀’
• Uses nesting technique (NEW!)

2. Small constant 𝜀′-> fully secure

Nested PKE Amplification

For any constant 𝜀 ∈ (0,1) and 𝜀-secure PKE scheme PKE, the PKE
scheme PKE* obtained by composing PKE with itself is 𝜀2 +
𝑛𝑒𝑔𝑙 𝜆 − secure.

Two Steps in Amplification
𝜀-secure FE -> fully secure FE

1. Constant 𝜀 -> arbitrarily small constant 𝜀’
• Uses nesting technique (NEW!)

2. Small constant 𝜀′-> fully secure
• Parallel repetition

• Set homomorphic secret sharing (NEW!)

Nested PKE Amplification

For any constant 𝜀 ∈ (0,1) and 𝜀-secure PKE scheme PKE, the PKE
scheme PKE* obtained by composing PKE with itself is 𝜀2 +
𝑛𝑒𝑔𝑙 𝜆 − secure.

𝜀-secure FE -> fully secure FE

1. Constant 𝜀 -> arbitrarily small constant 𝜀’
• Uses nesting technique (NEW!)

2. Small constant 𝜀′-> fully secure
• Parallel repetition

• Set homomorphic secret sharing (NEW!)

Two Steps in Amplification

Nested PKE Amplification

For any constant 𝜀 ∈ (0,1) and 𝜀-secure PKE scheme PKE, the PKE
scheme PKE* obtained by composing PKE with itself is 𝜀2 +
𝑛𝑒𝑔𝑙 𝜆 − secure.

Nested FE

f
m

SKf ← KeyGen(MSK1, f)

CT ← Enc(MSK1, m)

Nested FE

Dec(, ∗)f

CT ← Enc(MSK2, Enc(MSK1, m))

SKf ← KeyGen(MSK2, Dec(KeyGen(MSK1, f), ∗))

m

Nested FE

m

Dec(, ∗)

CT ← Enc(MSK2, Enc(MSK1, m))

SKf ← KeyGen(MSK2, Dec(KeyGen(MSK1, f), ∗))

Dec(,) = Dec(,) = f(m) f mm

f

Amplification of Nested Primitives

Intuition: If one layer is
secure, then the whole thing

is secure

Expectation: Amplify security from 𝜀 → 𝜀2

Nested PKE

CT ← Enc(PK2, Enc(PK1, m))

SK ← (SK1, SK2)

Security:
Enc(m) Enc(0)

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m)

= Enc(0)
[Imp95, MT10]

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10]

density() = = density() = 1 - 𝜀

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10]

Hardcore measures depend on
the input to the encryption.

density() = = density() = 1 - 𝜀

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m’)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10]

Hardcore measures depend on
the input to the encryption.

density() = = density() = 1 - 𝜀

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10]

Overall Idea: Strong security
when sampling from hardcore

measure

density() = = density() = 1 - 𝜀

Each layer
ε-secure

1 - ε =

ε =

Each layer
ε-secure

w. prob

w. prob

1 - ε =

ε =

Each layer
ε-secure

Sample from hardcore measure
→ Expect strong security

w. prob

w. prob

1 - ε =

ε =

Apply hardcore
lemma

Each layer
ε-secure

w. prob

w. prob

1 - ε =

ε =

Apply hardcore
lemma

Each layer
ε-secure

w. prob

w. prob

1 - ε =

ε =

1 - ε =

ε =

Apply hardcore
lemma

Each layer
ε-secure

w. prob

w. prob

w. prob

w. prob

1 - ε =

ε =

1 - ε =

ε =

With probability ε2,
it is insecure

Apply hardcore
lemma

Each layer
ε-secure

w. prob

w. prob

w. prob

w. prob

1 - ε =

ε =

1 - ε =

ε =

With probability ε2,
it is insecure

Apply hardcore
lemma

Each layer
ε-secure

Sample from
hardcore

measure →
Expect strong

security

w. prob

w. prob

w. prob

w. prob

With probability ε2,
it is insecure

1 - ε =

ε =

1 - ε =

ε =

Apply hardcore
lemma.

Each layer
ε-secure

w. prob

w. prob

w. prob

w. prob

With probability ε2,
it is insecure

1 - ε =

ε =

1 - ε =

ε =

Apply hardcore
lemma

Each layer
ε-secure

w. prob

w. prob

w. prob

w. prob

Reduction First Attempt

Want

Given

Reduction First Attempt
1. Receive which is either

or

Want

Given

Reduction First Attempt
1. Receive which is either

or

2. Sample from to compute

or

to get either

Given

Want

Reduction First Attempt
1. Receive which is either

2. Sample from to compute

to get either

Problems

1. might not be
efficiently samplable
or computable.

or

or

Reduction First Attempt
1. Receive which is either

2. Sample from to compute

2. Hardcore measure
depends on whether
we have

or

to get either

Problems

1. might not be
efficiently samplable
or computable.

or

or

Hardcore Measures

Weak indistinguishability
over uniform randomness

Strong indistinguishability
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m’)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10]

Hardcore measures depend on
the input to the encryption.

density() = = density() = 1 - 𝜀

Reduction First Attempt
1. Receive which is either

2. Sample from to compute

2. Hardcore measure
depends on whether
we have

or

to get either

Problems

1. might not be
efficiently samplable
or computable.

or

or

f()→

Fixing Problem 1: Efficient Simulation

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f()→

1. [TTV09, Skó15] (informal) Every high density
measure can be “efficiently” simulated

f()→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f()→

f()→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f()→

Key Observation: Efficiency of simulator
is only dependent on the output of f

f()→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f()→

2. Use commitment of hidden information.

f(){ }→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f(){ }→
Brute force

compute

Brute force
compute

2. Use commitment of hidden information.

f(){ }→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f(){ }→
Brute force

compute

Brute force
compute

2. Use commitment of hidden information.

Sim just as efficient!

f(){ }→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f(){ }→
Brute force

compute

Brute force
compute

2. Use commitment of hidden information.

f(){ }→

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→

Sim()→

f(){ }→0

0

Brute force
compute

Brute force
compute

2. Use commitment of hidden information.
Change commitment to zero.

Fixing Problem 2: Independence from Input

2. Hardcore measure
depends on whether
we have

or

Problems

1. might not be
efficiently samplable
or computable.

Sim()→0

f()→

f()→

Result: Simulate hardcore measures.

Reduction First Attempt
1. Receive which is either

2. Sample from to compute

2. Hardcore measure
depends on whether
we have

or

to get either

Problems

1. might not be
efficiently samplable
or computable.

or

or

Sim()→0

Fixed Reduction
1. Receive which is either

2. Compute to get

or

or

Sim()→0

Fixed Reduction
1. Receive which is either

2. Compute to get

or

or

Sim()→0

Fixed Reduction
1. Receive which is either

2. Compute to get

or

or

With probability ε2,
it is insecure

1 - ε =

ε =

1 - ε =

ε =

Apply hardcore
lemma

Use reduction

Each layer
ε-secure

w. prob

w. prob

w. prob

w. prob

Amplification of Nested Primitives

Intuition: If one layer is
secure, then the whole thing

is secure

Result: Amplify security from 𝜀 → 𝜀2 + 𝑛𝑒𝑔𝑙(𝜆)

Summary

• Amplify FE from 𝜀-security for any constant 𝜀 ∈ 0,1 to full security,
unconditionally.
• Preserves compactness

• New technique for amplification of nested primitives.

• Introduce set homomorphic secret sharing.

Thank you!

