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• [AJS18, AJL+19] Amplify FE from (1 - 1/poly(λ))-security to full 
security assuming subexponentially secure LWE.
• Preserves compactness and sublinearity

• Polynomial and subexponential versions

• No other FE amplification results known

Previous Work

• Amplify FE from 𝜀-security for any constant 𝜀 ∈ 0,1 to full security, 
unconditionally. 
• Preserves compactness

• Polynomial and subexponential versions

Our Work
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SKf ← KeyGen(MSK1, f)

CT ← Enc(MSK1, m)



Nested FE

Dec(                 , ∗ )f

CT ← Enc(MSK2,  Enc(MSK1, m))

SKf ← KeyGen(MSK2, Dec(KeyGen(MSK1, f), ∗ ))

m



Nested FE

m

Dec(                 , ∗ )

CT ← Enc(MSK2,  Enc(MSK1, m))

SKf ← KeyGen(MSK2, Dec(KeyGen(MSK1, f), ∗ ))

Dec(                 ,            ) =  Dec(                  ,          ) = f(m) f mm

f



Amplification of Nested Primitives

Intuition: If one layer is 
secure, then the whole thing 

is secure

Expectation: Amplify security from 𝜀 → 𝜀2



Nested PKE

CT ← Enc(PK2,  Enc(PK1, m))

SK ← (SK1, SK2)

Security:
Enc(m)         Enc(0) 
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Hardcore Measures

Weak indistinguishability 
over uniform randomness

Strong indistinguishability 
over hardcore measures

Randomness Randomness Randomness Randomness

= Enc(m)

= Enc(0)

𝜀 - distinguishable

[Imp95, MT10] 

Overall Idea: Strong security 
when sampling from hardcore 

measure

density(       ) =          = density(      ) = 1 - 𝜀
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1. [TTV09, Skó15] (informal) Every high density 
measure can be “efficiently” simulated
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f(            ){                  }→
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2. Hardcore measure 
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efficiently samplable
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compute

Brute force
compute

2. Use commitment of hidden information.
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Fixing Problem 2: Independence from Input

2. Hardcore measure 
depends on whether 
we have 

or

Problems

1.           might not be 
efficiently samplable
or computable.

Sim(            )→0

f(            )→

f(            )→

Result: Simulate hardcore measures.
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With probability ε2, 
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Amplification of Nested Primitives

Intuition: If one layer is 
secure, then the whole thing 

is secure

Result: Amplify security from 𝜀 → 𝜀2 + 𝑛𝑒𝑔𝑙(𝜆)



Summary

• Amplify FE from 𝜀-security for any constant 𝜀 ∈ 0,1 to full security, 
unconditionally. 
• Preserves compactness

• New technique for amplification of nested primitives.

• Introduce set homomorphic secret sharing.

Thank you!


