Amplitying the Security of
Functional Encryption,
Unconditionally

Aayush Jain Alexis Korb Nathan Manohar Amit Sahai
UCLA UCLA UCLA UCLA




(Secret Key) Functional Encryption

[SWO05, BSW11, O’N10]

A )
/MSK « Setup(1 A ) 'é
sk; < KeyGen(MSK, f) Authority

- )

-

B

@ { )

2

Lf.
Users .. { i



(Secret Key) Functional Encryption

[SWO05, BSW11, O’N10]

2%
/MSK « Setup(1%) A ) %
sk < KeyGen(MSK, 1) Authority
ct « Enc(MSK, m)

Y Dec(sk, ct) Y,

N

Broadcast |
— [ |




Idea: Given sk;
and Enc(m),
adversary
should only
learn f(m).

FE - Security

If Vi, f.(m,) = f.(m,),

then




FE Amplification

e '
FE |=—— | L%

 Fundamental question

* New sources of hardness may lead to
weak primitives = amplify to fully secure

 Results can be unconditional



Idea: Given sk;
and Enc(m),
adversary
should only
learn f(m).

FE - Security

If Vi, f.(m,) = f.(m,),

then

p-secure FE = Adversary
can distinguish between
Enc(mg) and Enc(m,)

kW|th probability at most P,




FE Amplification

e '
FE |=—— | L%

 Fundamental question

* New sources of hardness may lead to
weak primitives = amplify to fully secure

 Results can be unconditional



Previous Work

* [AJS18, AJL+19] Amplify FE from (1 - 1/poly(A))-security to full
security assuming subexponentially secure LWE.
* Preserves compactness and sublinearity
* Polynomial and subexponential versions

* No other FE amplification results known




Previous Work

* [AJS18, AJL+19] Amplify FE from (1 - 1/poly(A))-security to full
security assuming subexponentially secure LWE.
* Preserves compactness and sublinearity
* Polynomial and subexponential versions

* No other FE amplification results known

Can we get FE ampilification from
weaker assumptions?




Previous Work

* [AJS18, AJL+19] Amplify FE from (1 - 1/poly(A))-security to full
security assuming subexponentially secure LWE.
* Preserves compactness and sublinearity
* Polynomial and subexponential versions

* No other FE amplification results known

Can we get FE ampilification from
weaker assumptions?

YES!




Previous Work
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Our Work

* Amplify FE from g-security for any constant € € (0,1) to full security,
unconditionally.
* Preserves compactness
e Polynomial and subexponential versions
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Amplification of Nested Primitives

‘L N Intuition: If one layer is
N secure, then the whole thing

’L j is secure

Expectation: Amplify security from & — &2
k / P pHTY Y




Nested PKE

CT « Enc(PK,, Enc(PK,, m))
SK < (SK;, SK,)

Security:
Enc(m) =, Enc(0)
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Fixing Problem 1: Efficient Simulation
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summary

* Amplify FE from &-security for any constant € € (0,1) to full security,
unconditionally.

* Preserves com pactness

* New technique for amplification of nested primitives.
* Introduce set homomorphic secret sharing.

Thank you!



