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Yao's garbled circuits

e Two-party computation (2PC)

* Multiple optimizations

* Point-and-permute
Free-XOR
Garbled-row-reduction
Half-gates (state-of-the-art) [1!
Fixed-key AES based garbling [2]

[1] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole—reducing data transfer in garbled circuits using half
gates. In Advances in Cryptology—Eurocrypt 2015, Part Il, volume 9057 of LNCS, pages 220-250. Springer, 2015.

[2] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher. In IEEE
Symposium on Security and Privacy (S&P) 2013, pages 478—-492, 2013.



Concrete security for Half-Gates (Outline)

* An attack on current Half-Gates implementation

* Deficiencies of current implementation
* Inappropriate instantiation of the hash function
* A lack of concrete security

A new abstraction of hash function

* miTCCR hash
 Better concrete security
* Optimization/performance



Attack overview

 Exploit the weakness when H (*) instantiated with fixed-key AES

* Attacker succeed in running time 0(2"/6‘)
 k: bit length of the labels; C: # of AND gates

e Circuit with k = 80 and C = 2*° would be completely broken
e Circuit with k = 128 and C = 2*° has only ~80 bit security

* Implementation of the attack consistent with analysis
* Can be extended to multi-instance case



Half-gate protocol

WO, W2BR Wa
W2, WO DR W,
Wy, Wy ®R Wp
Generator Evaluator
TG} TE
AND gate Garbling o AND gate Evaluation

TG = H(Waotj)eaH(Wal’])eapr
Ty = H(Wy,j')®H(Wy,j')® Wy
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Details of the attack

* The evaluator receives T, = H(W,?, )H)®H (W, ) )®p,R
Evaluator * Compute
Hq ¥ T @ H(Wg,j) = HW,®R, j)®ppR
e With prob=1/2,
Hq, = H(W, @R, j)



Details of the attack

Implementation of the H :

H(x,j) = n(K)®K, where K = 2x®j

e With prob=1/2,
Hy = HW,®R,j) = n2(W,®R) &) S2(W,DR)Dj
o Iffind W*s.t. H; = m(W*)®W?, then knows R.

Evaluator

* The evaluator collects all the (j, W,, H,) pairs.



Details of the attack

Implementation of the H :

H(x,j) = n(K)®K, where K = 2x®j

Randomly generate
Evaluator w*

1

Oracle
H

(2
H* =n(W")ew*

Oracle
/O pairs

U, Wa, Hq)




Implementation of the attack
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(a) Number of mqueries for the attack to succeed, (b) The running time of our attack with C' = 230
on a log/log scale. and different values of k.

Result of interpolation:
Breaking the circuit when k=80 using 267 machine-months & $3500.



Better concrete security

Abstraction

OguTCCR



Better concrete security

Hash function Abstraction Protocol

MMOE OPUTCCR Half-Gate



Abstraction of the hash function

OMUTCCR (v i b) < H(WPR,()®b - R

Definition 3. Given a function HE : W x T — W, a distribution R on W, and a distinguisher

D, define
AAvRTCR(D,u,p) | pr [DPORTTOORITO — g
HR 2 Ri,.. RM—’R[ J
- Pr [DE’fl(') ----- fu(')=1”,
fryfue=Funcyy 01}, w

where both probabilities are also over choice of E and we require that

e Adversary given u instances

* Queries of form (*, i,x) at most u



The hash function

e Hash function (from ideal cipher)
MMOE (x,i) & E(i,0(x))®a(x)

* o(x) is alinear orthomorphism
e Linearif o(x®y) = c(x)®o(y)
* Orthomorphism if it is a permutation, and o' (x) ¥ o(x)®x is also a permutation
* o(xy ll xg) =xg @ x;, l X,

e £ is modeled as an ideal cipher



Concrete security bound

* Multi-instance tweakable circular correlation robustness (miTCCR)
OMTCCR (i b) & H(W@®R,i)®b - R

e Adversary given u instances.
* Queries of form (*, i,x) at most .

* Attacker advantage

2up  (u—1)q
E=——+
2P 2P




Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Bound the queries of form (*, i,%).
* Before: i starts from 1.
* Now: i starts from a random point.
* Proof using “balls-and-bins”



Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Concrete security

Cup+ (u—-1)C N (2C)#+
B k=2 (i + 1)Ix2HL

&



Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Concrete security

L c e e s
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Implementation & optimization

* Linear orthomorphism

* mask = _mm_set_epi64x(1°%,0%)

MMOE (x,i) « E(i,0(x))®o(x)

* 0(x) = _mm_shuffle_epi32(a, 78)®_mm_and_si128(a, mask)
* Batch key scheduling [GLNP15]

* Batch 8 key expansion

Hash NI 1 Comp. sec. 100 2 localh
function support? (bits) Mbps Gbps '°¢@ ost
Zahur et al. Y 128 89 0.4 7.8 23
SHA-3 N 128 125 0.27 0.27 0.28
SHA-256 N 128 125 0.4 1.1 1.2
SHA-256 Y 128 125 0.4 2.1 2.45
_—_E
MMO Y 128 125 0.4 7.8 15
__——E
MMO Y 88 86 0.63 12 15

We optimized it
to 20 since then



Implementation & optimization

' - MMO® (x,1) & E(i,0(x))®o(x)
* Linear orthomorphism x, 1) & E(i,0(x))®o(x

* Batch key scheduling [GLNP15]

* Implementation in EMP-toolkit

e https://github.com/emp-toolkit/emp-tool/blob/release-2/emp-
tool/utils/mitccrh.h

 Full version of the paper
* https://eprint.iacr.org/2019/1168.pdf
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