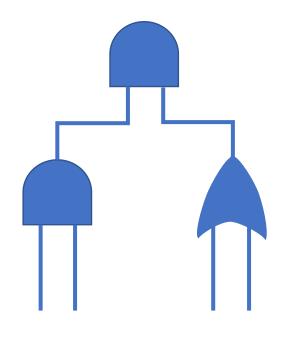
Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)

Chun Guo Jonathan Katz Xiao Wang Chenkai Weng Yu Yu

Yao's garbled circuits

- Two-party computation (2PC)
- Multiple optimizations
 - Point-and-permute
 - Free-XOR
 - Garbled-row-reduction
 - Half-gates (state-of-the-art) [1]
 - Fixed-key AES based garbling [2]



^[1] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole—reducing data transfer in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015. [2] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher. In IEEE Symposium on Security and Privacy (S&P) 2013, pages 478–492, 2013.

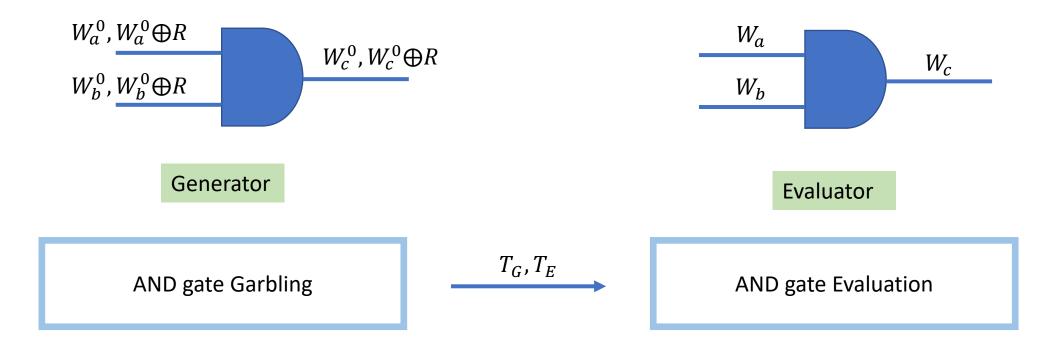
Concrete security for Half-Gates (Outline)

- An attack on current Half-Gates implementation
- Deficiencies of current implementation
 - Inappropriate instantiation of the hash function
 - A lack of concrete security
- A new abstraction of hash function
 - miTCCR hash
 - Better concrete security
 - Optimization/performance

Attack overview

- Exploit the weakness when H(*) instantiated with fixed-key AES
- Attacker succeed in running time $O(2^k/C)$
 - k: bit length of the labels; C: # of AND gates
 - Circuit with k=80 and $C=2^{40}$ would be completely broken
 - Circuit with k=128 and $C=2^{40}$ has only ~80 bit security
- Implementation of the attack consistent with analysis
- Can be extended to multi-instance case

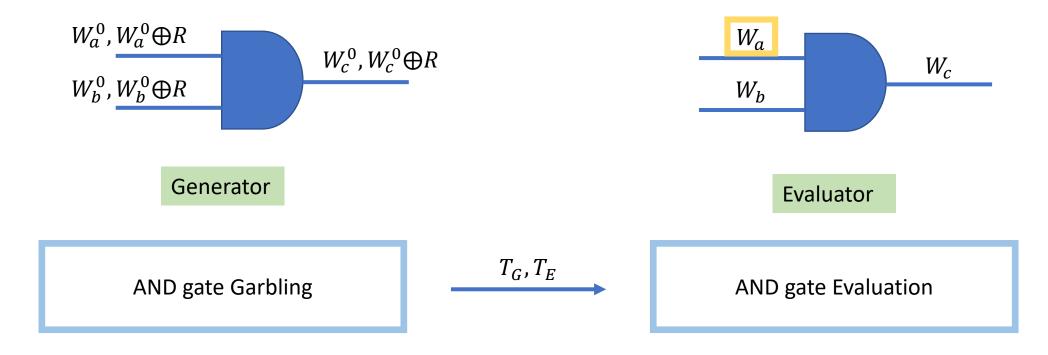
Half-gate protocol



$$T_G = H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R$$

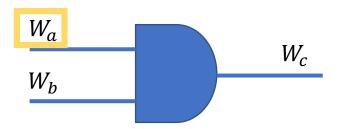
$$T_E = H(W_b^0, j') \oplus H(W_b^1, j') \oplus W_a^0$$

Half-gate protocol



$$T_G = H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R$$
$$T_E = H(W_b^0, j') \oplus H(W_b^1, j') \oplus W_a^0$$

Details of the attack



• The evaluator receives $T_G = H(W_a^0, j) \oplus H(W_a^1, j) \oplus p_b R$

Evaluator

Compute

$$H_a \stackrel{\text{def}}{=} T_G \oplus H(W_a, j) = H(W_a \oplus R, j) \oplus p_b R$$

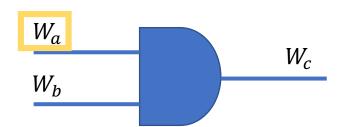
• With prob=1/2,

$$H_a = H(W_a \oplus R, j)$$

Details of the attack

Implementation of the H:

$$H(x,j) = \pi(K) \oplus K$$
, where $K = 2x \oplus j$



Evaluator

With prob=1/2,

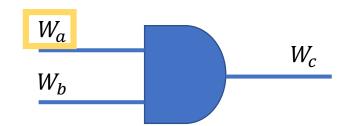
$$H_a = H(W_a \oplus R, j) = \pi(2(W_a \oplus R) \oplus j) \oplus 2(W_a \oplus R) \oplus j$$

- If find W^* s.t. $H_a = \pi(W^*) \oplus W^*$, then knows R.
- The evaluator collects all the (j, W_a, H_a) pairs.

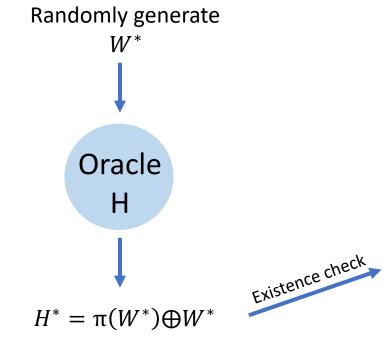
Details of the attack

Implementation of the H:

$$H(x,j) = \pi(K) \oplus K$$
, where $K = 2x \oplus j$



Evaluator

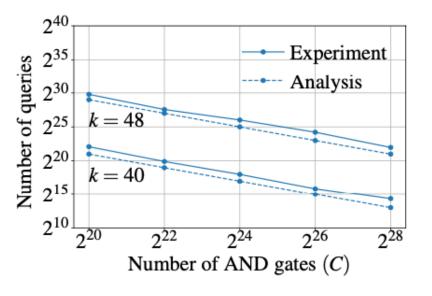


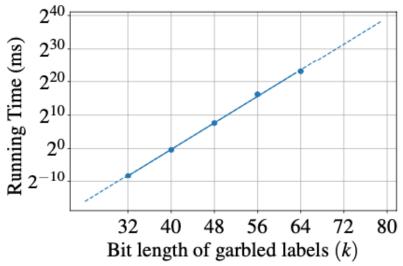
Oracle I/O pairs

 (j, W_a, H_a)

.

Implementation of the attack





- (a) Number of π -queries for the attack to succeed, on a log/log scale.
- (b) The running time of our attack with $C = 2^{30}$ and different values of k.

Result of interpolation:

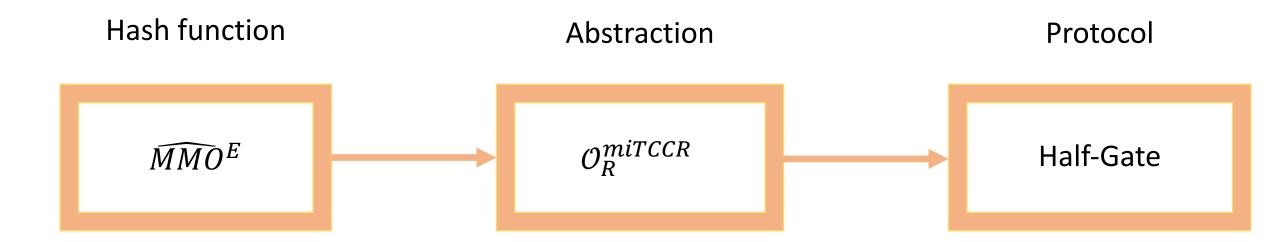
Breaking the circuit when k=80 using 267 machine-months & \$3500.

Better concrete security

Abstraction

 \mathcal{O}_R^{miTCCR}

Better concrete security



Abstraction of the hash function

$$\mathcal{O}_R^{miTCCR}(w,i,b) \stackrel{\text{def}}{=} H(w \oplus R,i) \oplus b \cdot R$$

Definition 3. Given a function $H^E: \mathcal{W} \times \mathcal{T} \to \mathcal{W}$, a distribution \mathcal{R} on \mathcal{W} , and a distinguisher D, define

$$\begin{split} \mathbf{Adv}_{H,\mathcal{R}}^{\mathsf{miTCCR}}(D,u,\mu) &\stackrel{\mathrm{def}}{=} \left| \Pr_{R_1,\dots,R_u \leftarrow \mathcal{R}} \left[D^{E,\mathcal{O}_{R_1}^{\mathsf{miTCCR}(\cdot)},\dots,\mathcal{O}_{R_u}^{\mathsf{miTCCR}(\cdot)}} = 1 \right] \right. \\ & \left. - \Pr_{f_1,\dots,f_u \leftarrow \mathsf{Func}_{\mathcal{W} \times \mathcal{T} \times \{0,1\},\mathcal{W}}} \left[D^{E,f_1(\cdot),\dots,f_u(\cdot)} = 1 \right] \right|, \end{split}$$

where both probabilities are also over choice of E and we require that

- Adversary given u instances
- Queries of form (\star, i, \star) at most μ

The hash function

Hash function (from ideal cipher)

$$\widehat{MMO}^E(x,i) \stackrel{\text{def}}{=} E(i,\sigma(x)) \oplus \sigma(x)$$

- $\sigma(x)$ is a linear orthomorphism
 - Linear if $\sigma(x \oplus y) = \sigma(x) \oplus \sigma(y)$
 - Orthomorphism if it is a permutation, and $\sigma'(x) \stackrel{\text{def}}{=} \sigma(x) \oplus x$ is also a permutation
 - $\sigma(x_L \parallel x_R) = x_R \oplus x_L \parallel x_L$
- E is modeled as an ideal cipher

Concrete security bound

• Multi-instance tweakable circular correlation robustness (miTCCR)

$$\mathcal{O}_R^{miTCCR}(w,i,b) \stackrel{\text{def}}{=} H(w \oplus R,i) \oplus b \cdot R$$

- Adversary given u instances.
- Queries of form (\star, i, \star) at most μ .
- Attacker advantage

$$\varepsilon = \frac{2\mu p}{2^{\rho}} + \frac{(\mu - 1)q}{2^{\rho}}$$

Better concrete security for multi-instance

• Multi-instance tweakable circular correlation robustness (miTCCR)

$$\mathcal{O}_R^{miTCCR}(w,i,b) \stackrel{\text{def}}{=} H(w \oplus R,i) \oplus b \cdot R$$

- Bound the queries of form (\star, i, \star) .
 - Before: i starts from 1.
 - Now: *i* starts from a random point.
 - Proof using "balls-and-bins"

Better concrete security for multi-instance

Multi-instance tweakable circular correlation robustness (miTCCR)

$$\mathcal{O}_R^{miTCCR}(w,i,b) \stackrel{\text{def}}{=} H(w \oplus R,i) \oplus b \cdot R$$

Concrete security

$$\varepsilon = \frac{\mu p + (\mu - 1)C}{2^{k-2}} + \frac{(2C)^{\mu+1}}{(\mu + 1)! \times 2^{\mu L}}$$

Better concrete security for multi-instance

Multi-instance tweakable circular correlation robustness (miTCCR)

$$\mathcal{O}_R^{miTCCR}(w,i,b) \stackrel{\text{def}}{=} H(w \oplus R,i) \oplus b \cdot R$$

Concrete security

k (bit)	С	Comp. sec. (bit)	Sta. sec. (bit)
80	$\leq 2^{43.5}$	78	40
128	$\leq 2^{61}$	125	64

Implementation & optimization

 $\widehat{MMO}^E(x,i) \stackrel{\text{def}}{=} E(i,\sigma(x)) \oplus \sigma(x)$

- Linear orthomorphism
 - mask = $_{mm_set_epi64x(1^{64},0^{64})}$
 - $\sigma(x) = \text{_mm_shuffle_epi32}(a, 78) \oplus \text{_mm_and_si128}(a, \text{mask})$
- Batch key scheduling [GLNP15]
 - Batch 8 key expansion

Hash function	NI support?	k	Comp. sec. (bits)	100 Mbps	$_{ m Gbps}^2$	localhost
Zahur et al.	Y	128	89	0.4	7.8	23
SHA-3	N	128	125	0.27	0.27	0.28
SHA-256	N	128	125	0.4	1.1	1.2
SHA-256	Y	128	125	0.4	2.1	2.45
\widehat{MMO}^E_E	Y	128	125	0.4	7.8	15
\widehat{MMO}^E	Y	88	86	0.63	12	15

We optimized it to 20 since then

Implementation & optimization

- Linear orthomorphism
- Batch key scheduling [GLNP15]
- Implementation in EMP-toolkit
 - https://github.com/emp-toolkit/emp-tool/blob/release-2/emptool/utils/mitccrh.h
- Full version of the paper
 - https://eprint.iacr.org/2019/1168.pdf

