Better Concrete Security for
Half-Gates Garbling
(in the Multi-Instance Setting)

Chun Guo Jonathan Katz Xiao Wang
Chenkai Weng Yu Yu

ngSITP

18 56 & =S 3
EPN /Q Northwestern
Universit
4RYLKé y

Yao's garbled circuits

e Two-party computation (2PC)

* Multiple optimizations

* Point-and-permute
Free-XOR
Garbled-row-reduction
Half-gates (state-of-the-art) [1!
Fixed-key AES based garbling [2]

[1] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole—reducing data transfer in garbled circuits using half
gates. In Advances in Cryptology—Eurocrypt 2015, Part Il, volume 9057 of LNCS, pages 220-250. Springer, 2015.

[2] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher. In IEEE
Symposium on Security and Privacy (S&P) 2013, pages 478—-492, 2013.

Concrete security for Half-Gates (Outline)

* An attack on current Half-Gates implementation

* Deficiencies of current implementation
* Inappropriate instantiation of the hash function
* A lack of concrete security

A new abstraction of hash function

* miTCCR hash
 Better concrete security
* Optimization/performance

Attack overview

 Exploit the weakness when H (*) instantiated with fixed-key AES

* Attacker succeed in running time 0(2"/6‘)
 k: bit length of the labels; C: # of AND gates

e Circuit with k = 80 and C = 2*° would be completely broken
e Circuit with k = 128 and C = 2*° has only ~80 bit security

* Implementation of the attack consistent with analysis
* Can be extended to multi-instance case

Half-gate protocol

WO, W2BR Wa
W2, WO DR W,
Wy, Wy ®R Wp
Generator Evaluator
TG} TE
AND gate Garbling o AND gate Evaluation

TG = H(Waotj)eaH(Wal’])eapr
Ty = H(Wy,j')®H(Wy,j')® Wy

Half-gate protocol

WO, W2BR Wa
W2, WO DR W,
Wy, Wy ®R Wp
Generator Evaluator
TG} TE
AND gate Garbling o AND gate Evaluation

TG = H(Waotj)eaH(Wal’])eapr
Ty = H(Wy,j')®H(Wy,j')® Wy

Details of the attack

* The evaluator receives T, = H(W,?,)H)®H (W,))®p,R
Evaluator * Compute
Hq ¥ T @ H(Wg,j) = HW,®R, j)®ppR
e With prob=1/2,
Hq, = H(W, @R, j)

Details of the attack

Implementation of the H :

H(x,j) = n(K)®K, where K = 2x®j

e With prob=1/2,
Hy = HW,®R,j) = n2(W,®R) &) S2(W,DR)Dj
o Iffind W*s.t. H; = m(W*)®W?, then knows R.

Evaluator

* The evaluator collects all the (j, W,, H,) pairs.

Details of the attack

Implementation of the H :

H(x,j) = n(K)®K, where K = 2x®j

Randomly generate
Evaluator w*

1

Oracle
H

(2
H* =n(W")ew*

Oracle
/O pairs

U, Wa, Hq)

Implementation of the attack

240 240

é 35 iExpenment g £30

8 30, Analysis T 22 ¢

o k=

(o] 4 210

i =T1)

QO =

-E 'E 20.

2 — 52—10
10 sl | | | |
2 222 224 226 228 32 40 48 56 64 72 80

Number of AND gates (C) Bit length of garbled labels (k)

(a) Number of mqueries for the attack to succeed, (b) The running time of our attack with C' = 230
on a log/log scale. and different values of k.

Result of interpolation:
Breaking the circuit when k=80 using 267 machine-months & $3500.

Better concrete security

Abstraction

OguTCCR

Better concrete security

Hash function Abstraction Protocol

MMOE OPUTCCR Half-Gate

Abstraction of the hash function

OMUTCCR (v i b) < H(WPR,()®b - R

Definition 3. Given a function HE : W x T — W, a distribution R on W, and a distinguisher

D, define
AAvRTCR(D,u,p) | pr [DPORTTOORITO — g
HR 2 Ri,.. RM—’R[J
- Pr [DE’fl(') ----- fu(')=1”,
fryfue=Funcyy 01}, w

where both probabilities are also over choice of E and we require that

e Adversary given u instances

* Queries of form (*, i,x) at most u

The hash function

e Hash function (from ideal cipher)
MMOE (x,i) & E(i,0(x))®a(x)

* o(x) is alinear orthomorphism
e Linearif o(x®y) = c(x)®o(y)
* Orthomorphism if it is a permutation, and o' (x) ¥ o(x)®x is also a permutation
* o(xy ll xg) =xg @ x;, l X,

e £ is modeled as an ideal cipher

Concrete security bound

* Multi-instance tweakable circular correlation robustness (miTCCR)
OMTCCR (i b) & H(W@®R,i)®b - R

e Adversary given u instances.
* Queries of form (*, i,x) at most .

* Attacker advantage

2up (u—1)q
E=——+
2P 2P

Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Bound the queries of form (*, i,%).
* Before: i starts from 1.
* Now: i starts from a random point.
* Proof using “balls-and-bins”

Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Concrete security

Cup+ (u—-1)C N (2C)#+
B k=2 (i + 1)Ix2HL

&

Better concrete security for multi-instance

* Multi-instance tweakable circular correlation robustness (miTCCR)

OMTCCR (i b) & H(W@®R,i)®b - R

* Concrete security

L c e e s

< 24-3 .5
128 < 261 125 64

Implementation & optimization

* Linear orthomorphism

* mask = _mm_set_epi64x(1°%,0%)

MMOE (x,i) « E(i,0(x))®o(x)

* 0(x) = _mm_shuffle_epi32(a, 78)®_mm_and_si128(a, mask)
* Batch key scheduling [GLNP15]

* Batch 8 key expansion

Hash NI 1 Comp. sec. 100 2 localh
function support? (bits) Mbps Gbps '°¢@ ost
Zahur et al. Y 128 89 0.4 7.8 23
SHA-3 N 128 125 0.27 0.27 0.28
SHA-256 N 128 125 0.4 1.1 1.2
SHA-256 Y 128 125 0.4 2.1 2.45
_—_E
MMO Y 128 125 0.4 7.8 15
__——E
MMO Y 88 86 0.63 12 15

We optimized it
to 20 since then

Implementation & optimization

' - MMO® (x,1) & E(i,0(x))®o(x)
* Linear orthomorphism x, 1) & E(i,0(x))®o(x

* Batch key scheduling [GLNP15]

* Implementation in EMP-toolkit

e https://github.com/emp-toolkit/emp-tool/blob/release-2/emp-
tool/utils/mitccrh.h

 Full version of the paper
* https://eprint.iacr.org/2019/1168.pdf

https://github.com/emp-toolkit/emp-tool/blob/release-2/emp-tool/utils/mitccrh.h
https://eprint.iacr.org/2019/1168.pdf

