Lower Bounds for Encrypted

Multi-Maps and Searchable Encryption
in the Leakage Cell Probe Model

Sarvar Patel*, Giuseppe Persiano** and Kevin Yeo*

*Google
**University of Salerno

Key k was
queried.

Privacy-Preserving Storage Protocols

Key k.

d

Key k, was
never queried.

Privacy-Preserving Storage Protocols

Key k,, was most
frequently queried.

What was the
requested key?

Privacy-Preserving Storage Protocols

Key k.

d

Privacy Spectrum for Maps

Plaintext Maps

e Classicdictionary problem with many solutions!
o Perfect Hashing: Static [FKS'84], Dynamic [DKM+'94]
o Cuckoo Hashing [PR'01]
o ...and many more

Plaintext Maps

e Classicdictionary problem with many solutions!
o Perfect Hashing: Static [FKS'84], Dynamic [DKM+'94]
o Cuckoo Hashing [PR'01]
o ...and many more

e Efficiency: O(1) overhead, O(n) storage

e Privacy: None -- Leaks all keys and values.

Privacy Spectrum for Maps

Efficiency: O(1)

Leakage: Everything

Structured Encryption

e Idea: Encrypt a data structure while maintaining operations
o Example: Searchable encryption = Encrypt a search index
e Many works in the past two decades:
o Static[SWP’'00],[BDOP’04],[CGKO’11], ...
o Dynamic[CJJ+'14],[SPS’14], ...
o Forward and Backward Privacy [Bost’16],[BMO’17], ...

Structured Encryption

e Idea: Encrypt a data structure while maintaining operations
o Example: Searchable encryption = Encrypt a search index
e Many works in the past two decades:
o Static[SWP’00],[BDOP’04],[CGKO'11], ...
o Dynamic[CJJ+'14],[SPS’14], ...
o Forward and Backward Privacy [Bost’16], [BMO’17], ...
e Efficiency: Typically O(1) but can be higher depending on leakage
e Privacy: Some well-defined leakage function
o Number of values associated with keys, Key-equality between operations, Number of operations, etc.

Privacy Spectrum for Maps

Structured

Encryption
Efficiency: O(1) Efficiency: O(1)
Leakage: Everything Leakage: Non-trivial

Leakage Function

Oblivious RAM

Oblivious RAM

e Introduced by Goldreich and Ostrovsky [GO’'96]
o Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18], ...
o ...leadingto optimal O(log n) overhead construction [AKL+'20]

Oblivious RAM

e Introduced by Goldreich and Ostrovsky [GO’96]
o Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18], ...
o ...leadingto optimal O(log n) overhead construction [AKL+'20]

e Efficiency: O(logn), which is tight due to [GO’'96, LN’ 18]
e Privacy: Adversary cannot distinguish two sequences of same length
o Leakage function is (upper bound on) length of operational sequence

Privacy Spectrum for Maps

Structured

Encryption
Efficiency: O(1) Efficiency: O(1)
Leakage: Everything Leakage: Non-trivial

Leakage Function

Oblivious RAM

Efficiency: O(logn)

Leakage: Length of
operational sequence

Privacy Spectrum for Maps

Efficiency: O(1)

Leakage: Everything

What leakage
functions inherently
cost Q(log n) like
ORAM?

Structured
Encryption

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Oblivious RAM

Efficiency: O(logn)

Leakage: Length of
operational sequence

Privacy Spectrum for Maps

Efficiency: O(1)

Leakage: Everything

Structured
Encryption

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Oblivious RAM

Efficiency: O(logn)

Leakage: Length of
operational sequence

Hash-and-Encrypt Compiler

e Consider any plaintext map with operations:
o Insert(k, v)
o Get(k)
o Delete(k)

Hash-and-Encrypt Compiler

d

Hash-and-Encrypt Compiler

d

Hash-and-Encrypt Compiler

d

Hash-and-Encrypt Compiler (Query)

GettHG) R
K | Endky)
Enc(K, V)

Hash-and-Encrypt Compiler (Insert)

Key k.
Insert(H(K, k), Enc(K, V))) -
K | Endky)

Hash-and-Encrypt Compiler (Insert)

Key k.
Insert(H(K, k), Enc(K, V))) -
K | Endky)

Leakage of Hash-and-Encrypt

Insert
H(K, “cat”)

Enc(K, “01”)

Leakage of Hash-and-Encrypt

Insert Insert
H(K, “cat”) H(K, “dog”)

Enc(K, “01”) Enc(K, “00”)

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

e Type of operation performed

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

e Type of operation performed
e Length of Query response

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

e Type of operation performed
e Length of Query response
e Key-Equality Pattern

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

Insert Insert Query Insert Query
H(K, “cat”) H(K, “dog”) H(K, “dog”) H(K, “cat”) H(K, “cat”)

Enc(K, “01”) Enc(K, “00”) Enc(K, “00”) Enc(K, “11”) Enc(K, “01”)
Enc(K, “11”)

Leakage of Hash-and-Encrypt

e Type of operation performed
e Length of Query response
e Key-Equality Pattern

Leakage of Hash-and-Encrypt

e Type of operation performed
e Length of Query response
e Key-Equality Pattern

Surprisingly, this matches leakage of best STE O(1) schemes!!!

Privacy Spectrum for Maps

Efficiency: O(1)

Leakage: Everything

Structured
Encryption

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Oblivious RAM

Efficiency: O(logn)

Leakage: Length of
operational sequence

Can we do better?

e Type of operation performed
e Length of Query response
e Key-Equality Pattern

Can we do better?

o—TFype-ofoperationperformed (Perform all possible operation types)

e Length of Query response
e Key-Equality Pattern

Can we do better?

o—TFype-ofoperationperformed (Perform all possible operation types)

e Length of Query response??? (Hard to do without increasing cost significantly)
o Padding Volume-Hiding STE schemes: [KM’19], [PPYY’19]
e Key-Equality Pattern

Can we do better?

o—TFype-ofoperationperformed (Perform all possible operation types)

e Length of Query response??? (Hard to do without increasing cost significantly)
o Padding Volume-Hiding STE schemes: [KM’19], [PPYY’19]
e Key-Equality Pattern

Decoupled Key-Equality

Insert
H(K, “cat”)

Enc(K, “01”)

Insert
H(K’ ((dog”)

Enc(K, “00”)

Query
H(K’ ((dog”)

Enc(K, “00”)

Insert
H(K, “cat”)

Enc(K, “11”)

Query
H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

Decoupled Key-Equality

Insert
H(K, “cat”)

Enc(K, “01”)

Insert
H(K’ ((dog”)

Enc(K, “00”)

Query
H(K, “dog”)

Enc(K, “00”)

Insert
H(K, “cat”)

Enc(K, “11”)

Query
H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

Decoupled Key-Equality

Insert
H(K, “cat”)

Enc(K, “01”)

Insert
H(K, udogn)

Enc(K, “00”)

Query
H(K’ “dog”)

Enc(K, “00”)

Insert
H(K, “cat”)

Enc(K, “11”)

Query
H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

Decoupled Key-Equality

Insert
H(K, “cat”)

Enc(K, “01”)

Insert
H(K’ ((dog”)

Enc(K, “00”)

Query

Enc(K, “00”)

Insert
H(K, “cat”)

Enc(K, “11”)

Query
H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

M ai N Resu '_t Theorem. Any encrypted multi-map with

leakage at most the decoupled key-equality
pattern must have Q(log n) overhead.

Main Result

Theorem. Any encrypted multi-map with
leakage at most the decoupled key-equality
pattern must have Q(log n) overhead.

Corollary. This lower bound is tight as there
exists O(log n) ORAM-based encrypted
multi-maps leaking much less than the
decoupled key-equality pattern.

Privacy Spectrum for Maps

Efficiency: O(1)

Leakage: Everything

Everything here
requires Q(log n)
overhead.

4 O
O
SIEnTEe Oblivious RAM
Encryption
Efficiency: O(1) Efficiency: O(logn)
Leakage: Non-trivial Leakage: Length of

Leakage Function operational sequence

Cell Probe Model

d

Cell Probe Model

d

Cell Probe Model

d

Cell Probe Model

Only cost is probing (read/write) a cell of w bits
Computationis free

Random oracle is free

Accessing client storage is free

Very weak cost model — Very strong lower bounds

Lower Bound

Uses Information Transfer technique [PD’06]

LOGARITHMIC LOWER BOUNDS IN THE CELL-PROBE MODEL*

MIHAI PATRASCU! AND ERIK D. DEMAINE!

Abstract. We develop a new technique for proving cell-probe lower bounds on dynamic data
structures. This technique enables us to prove an amortized randomized (lgn) lower bound per
operation for several data structural problems on n elements, including partial sums, dynamic con-
nectivity among disjoint paths (or a forest or a graph), and several other dynamic graph problems
(by simple reductions). Such a lower bound breaks a long-standing barrier of Q(lgn/lglgn) for any
dynamic language membership problem. It also establishes the optimality of several existing data
structures, such as Sleator and Tarjan’s dynamic trees. We also prove the first Q(log 5 n) lower bound
in the external-memory model without assumptions on the data structure (such as the comparison
model). Our lower bounds also give a query-update trade-off curve matched, e.g., by several data
structures for dynamic connectivity in graphs. We also prove matching upper and lower bounds for
partial sums when parameterized by the word size and the maximum additive change in an update.

Key words. Cell-probe complexity, lower bounds, data structures, dynamic graph problems,
partial-sums problem

AMS subject classification. 68Q17

1. Introduction. The cell-probe model is perhaps the strongest model of com-
putation for data structures, subsuming in particular the common word-RAM model.

Lower Bound

-

O 0C

Lower Bound

O 0C

Lower Bound

Lower Bound

Q op, — cread(15), cwrite(72), cwrite(220), ...
@ op, — cwrite(650), cwrite(327), cread(296), ...

@ op,, — cwrite(297), cread(372), cread(580), ...

Lower Bound

Op1

O|’.')2

op3

Lower Bound

Op1

op2

op; — ..., cread(15), ...

Lower Bound

op, — ..., cwrite(15), ...

O|’.')2

Op;— ...y cread(15),...

Lower Bound

op, — ..., cwrite(15), ...

O|’.')2

op; — ..., cread(15), ...

Lower Bound

O 0C

Lower Bound

O 0C

Lower Bound

O 0C

Lower Bound

insert(..., ...)

insert(...,...)

Lower Bound

insert(..., ...)

insert(...,...)

query(...)

query(...)

Lower Bound

insert(“1”,V)

insert(“2”,V)

query(uln)

query(«2n)

Lower Bound

e Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3” V), read(“3"), ...

o Vcontains alarge amount of entropy

Lower Bound

e Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3” V), read(“3"), ...
o Vcontains alarge amount of entropy
e Isn’tthis operation easy to handle?

Lower Bound

e Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3” V), read(“3"), ...
o Vcontains alarge amount of entropy

e Isn't this operation easy to handle?
e Key: Sequence must be indistinguishable from other sequences with identical leakage

Lower Bound

insert(“1”, V)
query(“1”)
insert(“2”, V)
query(“2”)
insert(“3”, V)
query(“3”)
insert(“4”, V)

query(“4”)

Lower Bound

insert(“1”, V)
query(“1”)
insert(“2”, V)
query(“2”)
insert(“3”, V)
query(“3”)
insert(“4”, V)

query(“4”)

Lower Bound

insert(“1”, V)
query(“1”)
insert(“2”, V)
query(“2”)
insert(“3”, V)
query(“3”)
insert(“4”, V)

query(“4”)

Lower Bound

insert(“1”, V)
query(dummy1)
insert(“2”, V)
query(dummy2)
insert(“3”, V)
query(“1”)
insert(“4”, V)

query(az»)

insert(dummy1, V)

insert(dummy2, V)

Lower Bound

insert(“1”, V)
query(dummy1)
insert(“2”, V)

query(dummy2)

insert(“3”, V)
querY(“j.”)
insert(“4”, V)

query(az»)

insert(dummy1, V)

insert(dummy2, V)

Lower Bound

insert(“1”, V)
query(dummy1)
insert(“2”, V)

query(dummy2)

insert(“3”, V)
querY(“j.”)
insert(“4”, V)

query(az»)

Lower Bound

e Usethese ideas to show that many probes must be assigned to half the internal nodes for this
“easy” hard distribution.
e Summing up the probes assigned over all nodes provides the lower bound

Stronger Lower Bounds

e Thelower bounds hold even when one of:
o Insert operations are performed in plaintext
o Query operations are performed in plaintext

Dynamic Searchable Encryption

Theorem. Dynamic searchable encryption schemes that are response-hiding require overhead Q(log n)
overhead.

Corollary. This lower bound is tight as there exist ORAM-based dynamic searchable encryption schemes
that are response-hiding with O(log n) overhead.

Other Cryptographic Cell Probe Lower Bounds

Q(log n) Oblivious RAMs [LN’18]

Q(log n) Oblivious Data Structures [JLN’19]

Q(log n) Differentially Private RAMs [PY’19]

Q(log? n) Oblivious Near-Neighbor Search [LMWY’19]
Q(log n) Multi-Server Oblivious RAMs [LSY’19]

Thank you!

