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Plaintext Maps

● Classic dictionary problem with many solutions!
○ Perfect Hashing: Static [FKS’84], Dynamic [DKM+’94] 
○ Cuckoo Hashing [PR’01]
○ … and many more

● Efficiency: O(1) overhead, O(n) storage

● Privacy: None -- Leaks all keys and values.
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Structured Encryption

● Idea: Encrypt a data structure while maintaining operations
○ Example: Searchable encryption = Encrypt a search index

● Many works in the past two decades:
○ Static [SWP’00], [BDOP’04], [CGKO’11], ...
○ Dynamic [CJJ+’14], [SPS’14], ...
○ Forward and Backward Privacy [Bost’16], [BMO’17], ...



Structured Encryption

● Idea: Encrypt a data structure while maintaining operations
○ Example: Searchable encryption = Encrypt a search index

● Many works in the past two decades:
○ Static [SWP’00], [BDOP’04], [CGKO’11], ...
○ Dynamic [CJJ+’14], [SPS’14], ...
○ Forward and Backward Privacy [Bost’16], [BMO’17], …

● Efficiency: Typically O(1) but can be higher depending on leakage

● Privacy: Some well-defined leakage function
○ Number of values associated with keys, Key-equality between operations, Number of operations, etc.
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Oblivious RAM

● Introduced by Goldreich and Ostrovsky [GO’96]
○ Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18], .... 
○ … leading to optimal O(log n) overhead construction [AKL+’20]



Oblivious RAM

● Introduced by Goldreich and Ostrovsky [GO’96]
○ Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18], .... 
○ … leading to optimal O(log n) overhead construction [AKL+’20]

● Efficiency: O(log n), which is tight due to [GO’96, LN’18]

● Privacy: Adversary cannot distinguish two sequences of same length
○ Leakage function is (upper bound on) length of operational sequence
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Hash-and-Encrypt Compiler

● Consider any plaintext map with operations:
○ Insert(k, v)
○ Get(k)
○ Delete(k)
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Hash-and-Encrypt Compiler
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Hash-and-Encrypt Compiler (Query)
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Hash-and-Encrypt Compiler (Insert)
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Hash-and-Encrypt Compiler (Insert)
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Leakage of Hash-and-Encrypt

● Type of operation performed

● Length of Query response

● Key-Equality Pattern

Surprisingly, this matches leakage of best STE O(1) schemes!!!
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Main Result Theorem. Any encrypted multi-map with 

leakage at most the decoupled key-equality 

pattern must have Ω(log n) overhead.

Corollary. This lower bound is tight as there 

exists O(log n) ORAM-based encrypted 

multi-maps leaking much less than the 

decoupled key-equality pattern.
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Cell Probe Model

● Only cost is probing (read/write) a cell of w bits

● Computation is free

● Random oracle is free

● Accessing client storage is free

● Very weak cost model → Very strong lower bounds



Lower Bound

● Uses Information Transfer technique [PD’06]
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Lower Bound

● Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3”, V), read(“3”), ...
○ V contains a large amount of entropy

● Isn’t this operation easy to handle?

● Key: Sequence must be indistinguishable from other sequences with identical leakage
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Lower Bound

● Use these ideas to show that many probes must be assigned to half the internal nodes for this 

“easy” hard distribution.

● Summing up the probes assigned over all nodes provides the lower bound



Stronger Lower Bounds

● The lower bounds hold even when one of:
○ Insert operations are performed in plaintext
○ Query operations are performed in plaintext



Dynamic Searchable Encryption

Theorem. Dynamic searchable encryption schemes that are response-hiding require overhead Ω(log n) 

overhead.

Corollary. This lower bound is tight as there exist ORAM-based dynamic searchable encryption schemes 

that are response-hiding with O(log n) overhead.



Other Cryptographic Cell Probe Lower Bounds

● Ω(log n) Oblivious RAMs [LN’18]

● Ω(log n) Oblivious Data Structures [JLN’19]

● Ω(log n) Differentially Private RAMs [PY’19]

● Ω(log2 n) Oblivious Near-Neighbor Search [LMWY’19]

● Ω(log n) Multi-Server Oblivious RAMs [LSY’19]



Thank you!


