
Lower Bounds for Encrypted
Multi-Maps and Searchable Encryption
in the Leakage Cell Probe Model
Sarvar Patel*, Giuseppe Persiano** and Kevin Yeo*

*Google
**University of Salerno

Privacy-Preserving Storage Protocols

V
1

V
2

V
n

...

Key k
i

V
i

Key ki was
queried.

k
1

k
2

...

k
n

Privacy-Preserving Storage Protocols

V
1

V
2

V
n

...

k
1

k
2

...

k
n

Key k2 was
never queried.

Key k15 was most
frequently queried.

Privacy-Preserving Storage Protocols

Key k
i

...

V
i

V
1

V
2

V
n

...

k
1

k
2

...

k
n

What was the
requested key?

Privacy Spectrum for Maps

Plaintext Maps

Plaintext Maps

● Classic dictionary problem with many solutions!
○ Perfect Hashing: Static [FKS’84], Dynamic [DKM+’94]
○ Cuckoo Hashing [PR’01]
○ … and many more

Plaintext Maps

● Classic dictionary problem with many solutions!
○ Perfect Hashing: Static [FKS’84], Dynamic [DKM+’94]
○ Cuckoo Hashing [PR’01]
○ … and many more

● Efficiency: O(1) overhead, O(n) storage

● Privacy: None -- Leaks all keys and values.

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption

Efficiency: O(1)

Leakage: Everything

Structured Encryption

● Idea: Encrypt a data structure while maintaining operations
○ Example: Searchable encryption = Encrypt a search index

● Many works in the past two decades:
○ Static [SWP’00], [BDOP’04], [CGKO’11], ...
○ Dynamic [CJJ+’14], [SPS’14], ...
○ Forward and Backward Privacy [Bost’16], [BMO’17], ...

Structured Encryption

● Idea: Encrypt a data structure while maintaining operations
○ Example: Searchable encryption = Encrypt a search index

● Many works in the past two decades:
○ Static [SWP’00], [BDOP’04], [CGKO’11], ...
○ Dynamic [CJJ+’14], [SPS’14], ...
○ Forward and Backward Privacy [Bost’16], [BMO’17], …

● Efficiency: Typically O(1) but can be higher depending on leakage

● Privacy: Some well-defined leakage function
○ Number of values associated with keys, Key-equality between operations, Number of operations, etc.

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Oblivious RAM

● Introduced by Goldreich and Ostrovsky [GO’96]
○ Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18],
○ … leading to optimal O(log n) overhead construction [AKL+’20]

Oblivious RAM

● Introduced by Goldreich and Ostrovsky [GO’96]
○ Also, many works in the past decade [PR’10], [SSS’11], [MMOT’12], [SvDS’13], [PPRY’18],
○ … leading to optimal O(log n) overhead construction [AKL+’20]

● Efficiency: O(log n), which is tight due to [GO’96, LN’18]

● Privacy: Adversary cannot distinguish two sequences of same length
○ Leakage function is (upper bound on) length of operational sequence

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Efficiency: O(log n)

Leakage: Length of
operational sequence

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Efficiency: O(log n)

Leakage: Length of
operational sequence

What leakage
functions inherently

cost Ω(log n) like
ORAM?

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Efficiency: O(log n)

Leakage: Length of
operational sequence

Hash-and-Encrypt Compiler

● Consider any plaintext map with operations:
○ Insert(k, v)
○ Get(k)
○ Delete(k)

Hash-and-Encrypt Compiler

V
1

V
2

V
n

...

k
1

k
2

...

k
nK

Hash-and-Encrypt Compiler

V
1

V
2

V
n

...

H(K, k
1

)

K

H(K, k
2

)

...

H(K, k
n
)

Hash-and-Encrypt Compiler

Enc(K, V
1

)

Enc(K, V
2

)

Enc(K, V
n
)

...

H(K, k
1

)

K

H(K, k
2

)

...

H(K, k
n
)

Hash-and-Encrypt Compiler (Query)

Enc(K, V
1

)

Enc(K, V
2

)

Enc(K, V
n
)

...

H(K, k
1

)

K

H(K, k
2

)

...

H(K, k
n
)

Key k
i

H(K, k
i
)

Get(H(K, k
i
))

Enc(K, V
i
)

Hash-and-Encrypt Compiler (Insert)

Enc(K, V
1

)

Enc(K, V
2

)

Enc(K, V
n
)

...

H(K, k
1

)

K

H(K, k
2

)

...

H(K, k
n
)

Key k
i

Value V
i

Insert(H(K, k
i
), Enc(K, V

i
))

H(K, k
i
), Enc(K, V

i
)

Hash-and-Encrypt Compiler (Insert)

Enc(K, V
1

)

Enc(K, V
2

)

Enc(K, V
n
)

Enc(K, V
i
)

H(K, k
1

)

K

H(K, k
2

)

H(K, k
i
)

H(K, k
n
)

Key k
i

Value V
i

H(K, k
i
), Enc(K, V

i
)

Insert(H(K, k
i
), Enc(K, V

i
))

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

● Type of operation performed

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

● Type of operation performed

● Length of Query response

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

● Type of operation performed

● Length of Query response

● Key-Equality Pattern

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Leakage of Hash-and-Encrypt

● Type of operation performed

● Length of Query response

● Key-Equality Pattern

Leakage of Hash-and-Encrypt

● Type of operation performed

● Length of Query response

● Key-Equality Pattern

Surprisingly, this matches leakage of best STE O(1) schemes!!!

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Efficiency: O(log n)

Leakage: Length of
operational sequence

Can we do better?

● Type of operation performed

● Length of Query response

● Key-Equality Pattern

Can we do better?

● Type of operation performed (Perform all possible operation types)

● Length of Query response

● Key-Equality Pattern

Can we do better?

● Type of operation performed (Perform all possible operation types)

● Length of Query response??? (Hard to do without increasing cost significantly)
○ Padding Volume-Hiding STE schemes: [KM’19], [PPYY’19]

● Key-Equality Pattern

Can we do better?

● Type of operation performed (Perform all possible operation types)

● Length of Query response??? (Hard to do without increasing cost significantly)
○ Padding Volume-Hiding STE schemes: [KM’19], [PPYY’19]

● Key-Equality Pattern

Decoupled Key-Equality

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Decoupled Key-Equality

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Decoupled Key-Equality

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Decoupled Key-Equality

Insert

H(K, “cat”)

Enc(K, “01”)

Insert

H(K, “dog”)

Enc(K, “00”)

Insert

H(K, “cat”)

Enc(K, “11”)

Query

H(K, “dog”)

Enc(K, “00”)

Query

H(K, “cat”)

Enc(K, “01”)
Enc(K, “11”)

...

Main Result Theorem. Any encrypted multi-map with

leakage at most the decoupled key-equality

pattern must have Ω(log n) overhead.

Main Result Theorem. Any encrypted multi-map with

leakage at most the decoupled key-equality

pattern must have Ω(log n) overhead.

Corollary. This lower bound is tight as there

exists O(log n) ORAM-based encrypted

multi-maps leaking much less than the

decoupled key-equality pattern.

Privacy Spectrum for Maps

Plaintext Maps Structured
Encryption Oblivious RAM

Efficiency: O(1)

Leakage: Everything

Efficiency: O(1)

Leakage: Non-trivial
Leakage Function

Efficiency: O(log n)

Leakage: Length of
operational sequence

Everything here
requires Ω(log n)
overhead.

Cell Probe Model

Cell Probe Model

Cell Probe Model

Cell Probe Model

● Only cost is probing (read/write) a cell of w bits

● Computation is free

● Random oracle is free

● Accessing client storage is free

● Very weak cost model → Very strong lower bounds

Lower Bound

● Uses Information Transfer technique [PD’06]

Lower Bound

...

...

...

...

...

...

Lower Bound

...

...

...

...

...

...

op
1

op
2

op
n

...

Lower Bound

...

op
1

op
2

op
n

...

Lower Bound

...

op
1

 → cread(15), cwrite(72), cwrite(220), ...

op
2

 → cwrite(650), cwrite(327), cread(296), ...

op
n

→ cwrite(297), cread(372), cread(580), ...

...

Lower Bound

op
1

op
2

...

op
3

Lower Bound

op
1

op
2

...

op
3

 → …, cread(15), ...

Lower Bound

op
1

 → …, cwrite(15), ...

op
2

...

op
3
→ …, cread(15), ...

Lower Bound

15

op
1

 → …, cwrite(15), ...

op
2

...

op
3

 → …, cread(15), ...

Lower Bound

...

...

...

...

...

...

op
1

op
2

op
n

...

Lower Bound

...

...

...

...

...

...

op
1

op
2

op
n

...

Lower Bound

...

...

...

...

...

...

op
1

op
2

op
n

...

Lower Bound

insert(..., …)

insert(..., …)

Lower Bound

insert(..., …)

insert(..., …)

query(...)

query(...)

Lower Bound

insert(“1”, V)

insert(“2”, V)

query(“2”)

query(“1”)

Lower Bound

● Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3”, V), read(“3”), ...
○ V contains a large amount of entropy

Lower Bound

● Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3”, V), read(“3”), ...
○ V contains a large amount of entropy

● Isn’t this operation easy to handle?

Lower Bound

● Hard Sequence: insert(“1”, V), read(“1”), insert(“2”, V), read(“2”), insert(“3”, V), read(“3”), ...
○ V contains a large amount of entropy

● Isn’t this operation easy to handle?

● Key: Sequence must be indistinguishable from other sequences with identical leakage

Lower Bound
insert(“1”, V)

query(“1”)

query(“2”)

insert(“2”, V)

insert(“3”, V)

query(“3”)

query(“4”)

insert(“4”, V)

Lower Bound
insert(“1”, V)

query(“1”)

query(“2”)

insert(“2”, V)

insert(“3”, V)

query(“3”)

query(“4”)

insert(“4”, V)

Lower Bound
insert(“1”, V)

query(“1”)

query(“2”)

insert(“2”, V)

insert(“3”, V)

query(“3”)

query(“4”)

insert(“4”, V)

Lower Bound
insert(“1”, V)

query(dummy1)

query(dummy2)

insert(“2”, V)

insert(“3”, V)

query(“1”)

query(“2”)

insert(“4”, V)

Lower Bound
insert(“1”, V)

query(dummy1)

query(dummy2)

insert(“2”, V)

insert(“3”, V)

query(“1”)

query(“2”)

insert(“4”, V)

insert(dummy1, V)

insert(dummy2, V)

...

Lower Bound
insert(“1”, V)

query(dummy1)

query(dummy2)

insert(“2”, V)

insert(“3”, V)

query(“1”)

query(“2”)

insert(“4”, V)

insert(dummy1, V)

insert(dummy2, V)

...

Lower Bound

● Use these ideas to show that many probes must be assigned to half the internal nodes for this

“easy” hard distribution.

● Summing up the probes assigned over all nodes provides the lower bound

Stronger Lower Bounds

● The lower bounds hold even when one of:
○ Insert operations are performed in plaintext
○ Query operations are performed in plaintext

Dynamic Searchable Encryption

Theorem. Dynamic searchable encryption schemes that are response-hiding require overhead Ω(log n)

overhead.

Corollary. This lower bound is tight as there exist ORAM-based dynamic searchable encryption schemes

that are response-hiding with O(log n) overhead.

Other Cryptographic Cell Probe Lower Bounds

● Ω(log n) Oblivious RAMs [LN’18]

● Ω(log n) Oblivious Data Structures [JLN’19]

● Ω(log n) Differentially Private RAMs [PY’19]

● Ω(log2 n) Oblivious Near-Neighbor Search [LMWY’19]

● Ω(log n) Multi-Server Oblivious RAMs [LSY’19]

Thank you!

