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Preliminaries



Implementing Crypto Is Hard WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.
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Our contribution WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The Fujisaki-Okamoto (FO) transform does not directly handle

secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

We show the attack for FrodoKEM (Lattice/LWE based).
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A quick, lightweight, background



PKE’s and KEM’s WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Publik Key Encryption Schemes

sk, pk← KeyGen(·) (sk, pk)⇔ (secret key, public key)

c← PKE.CPA.Encrypt(pk,m) (m, c)⇔ (plaintext, ciphertext)

m← PKE.CPA.Decrypt(sk,c)

Key Encapsulation Mechanisms

sk, pk← KeyGen(·)
c, ss← KEM.CCA.Encaps(pk) ss⇔ (shared secret)

ss← KEM.CCA.Decaps(sk,c)
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Security Models WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.
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LWE and Code-based schemes WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

A common property:

LWE encoding

c = g(pk,m; r) + e(r)

Code-based encoding

c = mG ⊕ e

e can vary by a small degree without affecting decryption.

Decryption fails if e varies by a larger degree.
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Fujisaki-Okamoto I WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The FO-transform can be used to transform a CPA secure

PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

Output: (c, ss)

1 pick a random m

2 (r , k)← H(m, pk)

3 c ← PKE.CPA.Encrypt(pk,m;r)

/* IND-CPA secure */

4 ss← H(c , k)

5 return (c, ss)
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Fujisaki-Okamoto II WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)
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Fujisaki-Okamoto II WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

memcmp? Constant time?
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The Attack, Generalized



The Vulnerability WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 66c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8
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The Vulnerability WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD 00 BB AA 99 88 77 66c:
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Decryption Error Oracle WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.
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Secret Key Recovery WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 4: Secret Key Recovery

Input: n1

Output: sk

1 for i ← 0; i < n1; i ← i + 1 do

2 begin find (mi , di ) such that

3 Error.Oracle(mi , di ) = 0 and

4 Error.Oracle(mi , di + 1) = 1

5 end

6 end

7 Use set {((mi , di ), 0 ≤ i < n)} to extract the secret key

8 return sk
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The case of FrodoKEM



FrodoKEM KeyGen WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Simplified:

(r1, r2, seedA, s)← uniform random seeds.

E ← Frodo.SampleMatrix(r2)

Secret Key (S , s)

S ← Frodo.SampleMatrix(r1)

Public Key (seedA,B)

A← Frodo.Gen(seedA)

B ← AS + E (1)

11
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FrodoKEM Encaps WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri ) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C )

7 return (H(c||k), c)

12
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Algorithm 6: FrodoKEM.Decaps (simplified)

Input: c, sk

Output: ss

1 (B ′,C )⇐ Frodo.Unpack(c)

2 m′ ← Frodo.Decode(C − B ′S)

3 (r1, r2, r3, k
′)← H(H(pk)||m′)

4 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri ) end

5 B ′′ ← S ′A + E ′

6 C ′ ← S ′B + E ′′ + Frodo.Encode(m′)

7 if B ′||C = B ′′||C ′ then

8 return H(c ||k ′)

9 else

10 return H(c ||s)

11 end
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10 return H(c ||s) /* where s is part of secret key */
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The combined noise matrix E ′′′ WALLENBERG AI, 
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line 2: m′ ← Frodo.Decode(C − B ′S)

C − B ′S = Frodo.Encode(m′) + S ′E − E ′S + E ′′︸ ︷︷ ︸
E ′′′

Since S ′, E ′ and E ′′ are known and Equation (1) ⇒ E = B − AS :

We get linear equations for the values in S , if we know E ′′′.
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Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

−2D−Bp−1 ≤ E ′′′i ,j < 2D−Bp−1 for all entries i , j in matrix E ′′′.

Where Bp ≤ D and Bp,D ∈ Z are FrodoKEM paramters.

Picking x0 > 0 we get decryption failure when E ′′′i ,j + x0 ≥ 2D−Bp−1

Thus E ′′′i ,j = 2D−Bp−1 − x0

if Error.Oracle(mi , x0) = 1

and Error.Oracle(mi , x0 − 1) = 0.
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Tiny differences
4800

12700000 ≈ 0.04%

Binary search

• One binary search ≈ 97000 decapsulations

• Size of combined noice matrix 1344× 8

Complete Key Recovery

97000× 1344× 8 ≈ 230 queries for FrodoKEM-1344-AES

on a Intel i5-4200U CPU running at 1.6GHz.
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“All our implementations avoid the use of

secret address accesses and secret branches

and, hence, are protected against timing and

cache attacks.”

— FrodoKEM Specification.

Very good, but still not enough
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Thank you!
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