A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM

Qian Guo, Thomas Johansson, Alexander Nilsson August 10, 2020

Preliminaries

As shown by attacks on:

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

Post quantum Schemes?

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

Post quantum Schemes?

- McEliece in 2010 and 2013 [Str10; Str13]
- BLISS in 2016 [Bru+16]

As shown by attacks on:

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

Post quantum Schemes?

- McEliece in 2010 and 2013 [Str10; Str13]
- BLISS in 2016 [Bru+16]
- LAC & Ramstake in 2019 [D'A+19]

- DH / RSA / DSS in 1996 [Koc96]
- Openssl in 2002 and 2016 [BB03; YGH16] ...
 - 212 CVEs currently in NIST's Vulnerability Database

Post quantum Schemes?

- McEliece in 2010 and 2013 [Str10; Str13]
- BLISS in 2016 [Bru+16]
- LAC & Ramstake in 2019 [D'A+19]

This presentation: A general attack against the Fujisaki-Okamoto transformation.

Our contribution

The Fujisaki-Okamoto (FO) transform does not directly handle secret data, yet must be implemented in constant time.

Our contribution

The Fujisaki-Okamoto (FO) transform does not directly handle secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

Our contribution

The Fujisaki-Okamoto (FO) transform does not directly handle secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

We show the attack for FrodoKEM (Lattice/LWE based).

A quick, lightweight, background

Publik Key Encryption Schemes

```
\begin{array}{l} \mathtt{sk}, \mathtt{pk} \leftarrow \mathtt{KeyGen}(\cdot) & (\mathtt{sk}, \mathtt{pk}) \Leftrightarrow (\mathtt{secret \ key}, \ \mathtt{public \ key}) \\ \mathtt{c} \leftarrow \mathtt{PKE.CPA.Encrypt}(\mathtt{pk}, \mathtt{m}) & (\mathtt{m}, \mathtt{c}) \Leftrightarrow (\mathtt{plaintext}, \ \mathtt{ciphertext}) \\ \mathtt{m} \leftarrow \mathtt{PKE.CPA.Decrypt}(\mathtt{sk}, \mathtt{c}) \end{array}
```


Publik Key Encryption Schemes

```
\begin{array}{ll} \mathtt{sk}, \mathtt{pk} \leftarrow \mathtt{KeyGen}(\cdot) & (\mathtt{sk}, \mathtt{pk}) \Leftrightarrow (\mathtt{secret \ key}, \ \mathtt{public \ key}) \\ \mathtt{c} \leftarrow \mathtt{PKE.CPA.Encrypt}(\mathtt{pk,m}) & (\mathtt{m}, \mathtt{c}) \Leftrightarrow (\mathtt{plaintext}, \ \mathtt{ciphertext}) \\ \mathtt{m} \leftarrow \mathtt{PKE.CPA.Decrypt}(\mathtt{sk,c}) \end{array}
```

Key Encapsulation Mechanisms

```
\begin{aligned} \mathtt{sk}, \mathtt{pk} \leftarrow \mathtt{KeyGen}(\cdot) \\ \mathtt{c}, \mathtt{ss} \leftarrow \mathtt{KEM.CCA.Encaps}(\mathtt{pk}) & \mathtt{ss} \Leftrightarrow (\mathtt{shared secret}) \\ \mathtt{ss} \leftarrow \mathtt{KEM.CCA.Decaps}(\mathtt{sk}, \mathtt{c}) & \end{aligned}
```


PKE-schemes are often proven under the IND-CPA model

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a CPA secure PKE-cipher into a CCA secure cipher.

LWE and Code-based schemes

A common property:

A common property:

LWE encoding

$$c = g(pk, m; r) + e(r)$$

Code-based encoding

$$c = mG \oplus e$$

A common property:

LWE encoding

$$c = g(pk, m; r) + e(r)$$

Code-based encoding

$$c = mG \oplus e$$

e can vary by a small degree without affecting decryption.

A common property:

LWE encoding

$$c = g(pk, m; r) + e(r)$$

Code-based encoding

$$c = mG \oplus e$$

e can vary by a small degree without affecting decryption.

Decryption fails if *e* varies by a larger degree.

Fujisaki-Okamoto I

The FO-transform can be used to transform a CPA secure PK-cipher into a CCA secure non-malleable KEM:

The FO-transform can be used to transform a CPA secure PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

- 1 pick a random m
- 2 $(r,k) \leftarrow H(m,pk)$
- 3 $c \leftarrow \texttt{PKE.CPA.Encrypt(pk,m;r)}$
- 4 ss \leftarrow H(c,k)
- 5 return (c, ss)

The FO-transform can be used to transform a CPA secure PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

Output: (c, ss)

- 1 pick a random m
- $2 (r, \overline{k}) \leftarrow H(\overline{m}, pk)$
- 3 $c \leftarrow PKE.CPA.Encrypt(pk,m;r) /* IND-CPA secure */$
- 4 ss $\leftarrow H(c,k)$
- 5 return (c, ss)

Fujisaki-Okamoto II

The decapsulation function decodes and compare the re-encoding with the received ciphertext.

The decapsulation function decodes and compare the re-encoding with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

- 1 m' \leftarrow PKE.CPA.Decrypt(sk,c)
- 2 $(r', k') \leftarrow H(m', pk)$
- $s c' \leftarrow PKE.CPA.Encrypt(pk,m';r)$
- 4 if (c' = c) then **return** $ss' \leftarrow H(c, k)$
- 5 else return $ss' \leftarrow H(c, k')$
- 6 end if
- 7 **return** (c, ss)

The decapsulation function decodes and compare the re-encoding with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

- 1 $m' \leftarrow PKE.CPA.Decrypt(sk,c)$
- 2 $(r', k') \leftarrow H(m', pk)$
- $\mathbf{3} \ \mathbf{c'} \leftarrow \text{PKE.CPA.Encrypt(pk,m';r)}$
- 4 if (c' = c) then **return** $ss' \leftarrow H(c, k)$
- **5** else **return** $ss' \leftarrow H(c, k')$
- 6 end if
- 7 **return** (c, ss)

The decapsulation function decodes and compare the re-encoding with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

- 1 $m' \leftarrow PKE.CPA.Decrypt(sk,c)$
- 2 $(r', k') \leftarrow H(m', pk)$
- $\mathbf{3} \ \mathsf{c}' \leftarrow \mathtt{PKE.CPA.Encrypt(pk,m';r)}$
- 4 if (c' = c) then return $ss' \leftarrow H(c, k)$
- **5** else return $ss' \leftarrow H(c, k')$
- 6 end if
- 7 **return** (c, ss)

Fujisaki-Okamoto II

The decapsulation function decodes and compare the re-encoding with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

- 1 m' ← PKE.CPA.Decrypt(sk,c) memcmp? Constant time?
- 2 $(r', k') \leftarrow H(m', pk)$
- $3 c' \leftarrow PKE.CPA.Encrypt(pk,m';r)$
- 4 if (c' = c) then return $ss' \leftarrow H(c, k)$
- **5** else **return** $ss' \leftarrow H(c, k')$
- 6 end if
- 7 **return** (c, ss)

The Attack, Generalized

The Vulnerability

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

Strategy:

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.


```
c: FF EE DD DD BB AA 99 88 77 66 c: FF EE DD CC BB AA 99 88 77 66
```

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Assumptions:

- 1. Not constant time
- 2. Tiny modification to $c \rightarrow no$ change to c'
- 3. Large modification to $c \rightarrow total$ change of c'

- Do modifications at the end of c
- Find the exact threshold between case 2 and 3.
- Time KEM.CCA.Decaps, repeat as necessary.
- Extract secrets from the KEM-scheme.

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

- 1 $(r,k) \leftarrow H_1(m,pk)$
- 2 $c \leftarrow \texttt{PKE.CPA.Encrypt(pk,m;r)}$
- $c' \leftarrow c + d$
- 4 $t \leftarrow \mathsf{Measure}[\mathsf{KEM.CCA.Decaps}(\mathsf{sk,c'})]$
- 5 $b \leftarrow F(t)$
- 6 return b

where F(t) uses t to determine whether PKE.CPA.Decrypt returns m' = m or $m' \neq m$.

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

- 1 $(r,k) \leftarrow H_1(m,pk)$
- 2 $c \leftarrow PKE.CPA.Encrypt(pk,m;r)$
- $c' \leftarrow c + d$
- 4 $t \leftarrow \mathsf{Measure}[\mathsf{KEM.CCA.Decaps}(\mathsf{sk,c'})]$
- 5 $b \leftarrow F(t)$
- 6 return b

where F(t) uses t to determine whether PKE.CPA.Decrypt returns m' = m or $m' \neq m$.

Algorithm 3: Error. Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

- 1 $(r,k) \leftarrow H_1(m,pk)$
- 2 $c \leftarrow \texttt{PKE.CPA.Encrypt(pk,m;r)}$
- $c' \leftarrow c + d$
- 4 $t \leftarrow \mathsf{Measure}[\mathsf{KEM.CCA.Decaps}(\mathsf{sk,c'})]$
- 5 $b \leftarrow F(t)$
- 6 return b

where F(t) uses t to determine whether PKE.CPA.Decrypt returns m'=m or $m'\neq m$.

Algorithm 3: Error. Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

- 1 $(r,k) \leftarrow H_1(m,pk)$
- 2 $c \leftarrow \texttt{PKE.CPA.Encrypt(pk,m;r)}$
- $c' \leftarrow c + d$
- 4 $t \leftarrow Measure[KEM.CCA.Decaps(sk,c')]$
- 5 $b \leftarrow F(t)$
- 6 return b

where F(t) uses t to determine whether PKE.CPA.Decrypt returns m'=m or $m'\neq m$.

Algorithm 3: Error. Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

- $1 (r,k) \leftarrow H_1(m, pk)$
- 2 $c \leftarrow \texttt{PKE.CPA.Encrypt(pk,m;r)}$
- $c' \leftarrow c + d$
- 4 $t \leftarrow \mathsf{Measure}[\mathsf{KEM.CCA.Decaps}(\mathsf{sk,c'})]$
- 5 $b \leftarrow F(t)$
- 6 return b

where F(t) uses t to determine whether PKE.CPA.Decrypt returns m' = m or $m' \neq m$.

Secret Key Recovery

Algorithm 4: Secret Key Recovery

```
Input: n_1
Output: sk

1 for i \leftarrow 0; i < n_1; i \leftarrow i+1 do

2 begin find (m_i, d_i) such that

3 | Error.Oracle(m_i, d_i) = 0 and

4 | Error.Oracle(m_i, d_i) = 1

5 | end
```

- 6 end
- 7 Use set $\{((m_i, d_i), 0 \le i < n)\}$ to extract the secret key
- 8 return sk

Algorithm 4: Secret Key Recovery

```
Input: \overline{n_1}
  Output: sk
1 for i \leftarrow 0; i < n_1; i \leftarrow i + 1 do
      begin find (m_i, d_i) such that
2
           Error. Oracle(m_i, d_i) = 0 and
3
           Error. Oracle (m_i, d_i + 1) = 1
4
      end
5
6 end
7 Use set \{((m_i, d_i), 0 \le i < n)\} to extract the secret key
  return sk
```

return sk

Algorithm 4: Secret Key Recovery

```
Input: \overline{n_1}
  Output: sk
1 for i \leftarrow 0; i < n_1; i \leftarrow i + 1
                                          do
2
      begin find (m_i, d_i) such that
            Error. Oracle(m_i, d_i) = 0 and
3
            Error. Oracle(m_i, d_i + 1) = 1
4
      end
5
6 end
7 Use set \{((m_i, d_i), 0 \le i < n)\} to extract the secret key
```

The case of FrodoKEM

FrodoKEM KeyGen

$$(r_1, r_2, seed_A, s) \leftarrow uniform random seeds.$$

$$E \leftarrow \text{Frodo.SampleMatrix}(r_2)$$

Secret Key (S, s)

$$S \leftarrow \mathsf{Frodo.SampleMatrix}(r_1)$$

Public Key (see d_A, B)

$$A \leftarrow \mathsf{Frodo}.\mathsf{Gen}(\mathsf{seed}_A)$$

$$B \leftarrow AS + E$$
 (1)

FrodoKEM KeyGen

$$(r_1, r_2, seed_A, s) \leftarrow uniform random seeds.$$

$$E \leftarrow \text{Frodo.SampleMatrix}(r_2)$$

Secret Key (S, s)

$$S \leftarrow \mathsf{Frodo.SampleMatrix}(r_1)$$

Public Key (see $\overline{\mathbf{d}}_A, B$)

$$A \leftarrow \mathsf{Frodo}.\mathsf{Gen}(\mathsf{seed}_A)$$

$$B \leftarrow AS + E$$
 (1)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- $2 (r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow$ for $i \in \{1, 2, 3\}$ do Frodo.SampleMatrix (r_i) end
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- $2 (r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow$ for $i \in \{1, 2, 3\}$ do Frodo.SampleMatrix (r_i) end
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- 2 $(r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow$ for $i \in \{1, 2, 3\}$ do Frodo.SampleMatrix (r_i) end
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- $2 (r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow \text{for } i \in \{1, 2, 3\} \text{ do } \text{Frodo.SampleMatrix}(r_i) \text{ end}$
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- $2 (r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow$ for $i \in \{1, 2, 3\}$ do Frodo.SampleMatrix (r_i) end
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

Input: pk

- 1 $m \leftarrow$ uniform random plaintext
- $2 (r_1, r_2, r_3, k) \leftarrow H(H(pk)||m)$
- 3 $(S', E', E'') \leftarrow$ for $i \in \{1, 2, 3\}$ do Frodo.SampleMatrix (r_i) end
- 4 $B' \leftarrow S'A + E'$
- 5 $C \leftarrow S'B + E'' + Frodo.Encode(m)$
- **6** c ← Frodo.Pack(B'||C)
- 7 return (H(c||k), c)

FrodoKEM Decaps


```
Input: c, sk
   Output: ss
 (B', C) \Leftarrow Frodo.Unpack(c)
_2 m' \leftarrow \text{Frodo.Decode}(C - B'S)
(r_1, r_2, r_3, k') \leftarrow H(H(pk)||m')
4 (S', E', E'') \leftarrow \text{for } i \in \{1, 2, 3\} \text{ do } \text{Frodo.SampleMatrix}(r_i) \text{ end}
b'' \leftarrow S'A + E'
6 C' \leftarrow S'B + E'' + Frodo.Encode(m')
 7 if B'||C = B''||C' then
     return H(c||k')
9 else
        return H(c||s)
11 end
```



```
Input: c, sk
   Output: ss
 (B', C) \Leftarrow Frodo.Unpack(c)
2 m' \leftarrow \text{Frodo.Decode}(C - B'S)
(r_1, r_2, r_3, k') \leftarrow H(H(pk)||m')
4 (S', E', E'') \leftarrow \text{for } i \in \{1, 2, 3\} \text{ do } \text{Frodo.SampleMatrix}(r_i) \text{ end}
b'' \leftarrow S'A + E'
6 C' \leftarrow S'B + E'' + Frodo.Encode(m')
 7 if B'||C = B''||C' then
     return H(c||k')
9 else
        return H(c||s)
11 end
```



```
Input: c, sk
   Output: ss
 (B', C) \Leftarrow Frodo.Unpack(c)
_2 m' \leftarrow \text{Frodo.Decode}(C - B'S)
(r_1, r_2, r_3, k') \leftarrow H(H(pk)||m')
4 (S', E', E'') \leftarrow \text{for } i \in \{1, 2, 3\} \text{ do } \text{Frodo.SampleMatrix}(r_i) \text{ end}
B'' \leftarrow S'A + F'
6 C' \leftarrow S'B + E'' + Frodo.Encode(m')
 7 if B'||C = B''||C' then
    return H(c||k')
9 else
        return H(c||s)
11 end
```



```
Input: c, sk
   Output: ss
 (B', C) \Leftarrow Frodo.Unpack(c)
_2 m' \leftarrow \text{Frodo.Decode}(C - B'S)
(r_1, r_2, r_3, k') \leftarrow H(H(pk)||m')
4 (S', E', E'') \leftarrow for i \in \{1, 2, 3\} do Frodo.SampleMatrix(r_i) end
b'' \leftarrow S'A + E'
6 C' \leftarrow S'B + E'' + Frodo.Encode(m')
 7 if B'||C = B''||C' then
    return H(c||k')
9 else
       return H(c||s) /* where s is part of secret key
11 end
```


line 2:
$$m' \leftarrow \text{Frodo.Decode}(C - B'S)$$

$$C - B'S = \text{Frodo.Encode}(m') + \underbrace{S'E - E'S + E''}_{E'''}$$

line 2: $m' \leftarrow \text{Frodo.Decode}(C - B'S)$

$$C - B'S = \mathsf{Frodo}.\mathsf{Encode}(m') + \underbrace{S'E - E'S + E''}_{E'''}$$

Since S', E' and E'' are known and Equation (1) \Rightarrow E = B - AS:

line 2: $m' \leftarrow \text{Frodo.Decode}(C - B'S)$

$$C - B'S = Frodo.Encode(m') + \underbrace{S'E - E'S + E''}_{E'''}$$

Since S', E' and E'' are known and Equation (1) $\Rightarrow E = B - AS$:

We get linear equations for the values in S, if we know E'''.

Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

$$-2^{D-B_p-1} \le E_{i,j}^{"'} < 2^{D-B_p-1}$$
 for all entries i,j in matrix $E^{"'}$.

Where $B_p \leq D$ and $B_p, D \in \mathbb{Z}$ are FrodoKEM paramters.

Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

$$-2^{D-B_p-1} \le E_{i,j}^{"''} < 2^{D-B_p-1}$$
 for all entries i,j in matrix $E^{"'}$.

Where $B_p \leq D$ and $B_p, D \in \mathbb{Z}$ are FrodoKEM paramters.

Picking $x_0 > 0$ we get decryption failure when $E_{i,j}^{""} + x_0 \ge 2^{D-B_p-1}$

For successfull decryption:

$$-2^{D-B_p-1} \le E_{i,j}^{"''} < 2^{D-B_p-1}$$
 for all entries i,j in matrix $E^{"'}$.

Where $B_p \leq D$ and $B_p, D \in \mathbb{Z}$ are FrodoKEM paramters.

Picking $x_0 > 0$ we get decryption failure when $E_{i,j}^{""} + x_0 \ge 2^{D-B_p-1}$

Thus
$$E_{i,j}^{m} = 2^{D-B_p-1} - x_0$$

if Error.Oracle $(m_i, x_0) = 1$
and Error.Oracle $(m_i, x_0 - 1) = 0$.

Graphs, numbers and such

Tiny differences

 $\frac{4800}{12700000} \approx 0.04\%$

 $\frac{4800}{12700000} \approx 0.04\%$

Binary search

- One binary search \approx 97000 decapsulations
- Size of combined noice matrix 1344 × 8

Tiny differences

 $\frac{4800}{12700000} \approx 0.04\%$

Binary search

- One binary search \approx 97000 decapsulations
- Size of combined noice matrix 1344 × 8

Complete Key Recovery

 $97000\times1344\times8\approx2^{30}$ queries for FrodoKEM-1344-AES on a Intel i5-4200U CPU running at 1.6GHz.

Summary

"All our implementations avoid the use of secret address accesses and secret branches and, hence, are protected against timing and cache attacks."

— FrodoKEM Specification.

Very good, but still not enough

Thank you!

References

- [BB03] David Brumley and Dan Boneh. "Remote Timing Attacks Are Practical". In: 2003.
- [Bru+16] Leon Groot Bruinderink et al. "Flush, Gauss, and Reload A Cache Attack on the BLISS Lattice-Based Signature Scheme". In: 2016, pp. 323–345. DOI: 10.1007/978-3-662-53140-2_16.
- [D'A+19] Jan-Pieter D'Anvers et al. "Timing attacks on Error Correcting Codes in Post-Quantum Secure Schemes.". In: *IACR Cryptology ePrint Archive* 2019 (2019), p. 292.
- [GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. "A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM". In: Crypto (2020).
- [Koc96] Paul C. Kocher. "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems". In: 1996, pp. 104–113. DOI: 10.1007/3-540-68697-5_9.

- [Nae+18] M Naehrig et al. FrodoKEM: Learning With Errors Key Encapsulation-Algorithm Specifications And Supporting Documentation. Tech. rep. tech. rep., National Institute of Standards and Technology, 2019. https, 2018.
- [Str10] Falko Strenzke. "A Timing Attack against the Secret Permutation in the McEliece PKC". In: 2010, pp. 95–107. DOI: 10.1007/978-3-642-12929-2_8.
- [Str13] Falko Strenzke. "Timing Attacks against the Syndrome Inversion in Code-Based Cryptosystems". In: 2013, pp. 217–230. DOI: 10.1007/978-3-642-38616-9_15.
- [YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA. Cryptology ePrint Archive, Report 2016/224. https://eprint.iacr.org/2016/224. 2016.