
A key-recovery timing attack on

post-quantum primitives using the

Fujisaki-Okamoto transformation and its

application on FrodoKEM

Qian Guo, Thomas Johansson, Alexander Nilsson

August 10, 2020

Preliminaries

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Implementing Crypto Is Hard WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

As shown by attacks on:

• DH / RSA / DSS in 1996 [Koc96]

• Openssl in 2002 and 2016 [BB03; YGH16] . . .

• 212 CVEs currently in NIST’s Vulnerability Database

Post quantum Schemes?

• McEliece in 2010 and 2013 [Str10; Str13]

• BLISS in 2016 [Bru+16]

• LAC & Ramstake in 2019 [D’A+19]

This presentation: A general attack against the Fujisaki-Okamoto

transformation.

1

Our contribution WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The Fujisaki-Okamoto (FO) transform does not directly handle

secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

We show the attack for FrodoKEM (Lattice/LWE based).

2

Our contribution WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The Fujisaki-Okamoto (FO) transform does not directly handle

secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

We show the attack for FrodoKEM (Lattice/LWE based).

2

Our contribution WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The Fujisaki-Okamoto (FO) transform does not directly handle

secret data, yet must be implemented in constant time.

Potentially vulnerable NIST PQC candidates:

FrodoKEM, LAC, BIKE (early version), HQC, ROLLO and RQC.

Maybe others?

We show the attack for FrodoKEM (Lattice/LWE based).

2

A quick, lightweight, background

PKE’s and KEM’s WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Publik Key Encryption Schemes

sk, pk← KeyGen(·) (sk, pk)⇔ (secret key, public key)

c← PKE.CPA.Encrypt(pk,m) (m, c)⇔ (plaintext, ciphertext)

m← PKE.CPA.Decrypt(sk,c)

Key Encapsulation Mechanisms

sk, pk← KeyGen(·)
c, ss← KEM.CCA.Encaps(pk) ss⇔ (shared secret)

ss← KEM.CCA.Decaps(sk,c)

3

PKE’s and KEM’s WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Publik Key Encryption Schemes

sk, pk← KeyGen(·) (sk, pk)⇔ (secret key, public key)

c← PKE.CPA.Encrypt(pk,m) (m, c)⇔ (plaintext, ciphertext)

m← PKE.CPA.Decrypt(sk,c)

Key Encapsulation Mechanisms

sk, pk← KeyGen(·)
c, ss← KEM.CCA.Encaps(pk) ss⇔ (shared secret)

ss← KEM.CCA.Decaps(sk,c)

3

Security Models WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.

4

Security Models WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.

4

Security Models WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.

4

Security Models WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.

4

Security Models WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

PKE-schemes are often proven under the IND-CPA model

INDistinguishability under Chosen Plaintext Attack:

Security game with no access to a decryption oracle.

Often, IND-CCA is desirable.

INDistinguishability under Chosen Ciphertext Attack:

Security game with access to a decryption oracle.

The Fujisaki-Okamoto (FO) transform can be used to transform a

CPA secure PKE-cipher into a CCA secure cipher.

4

LWE and Code-based schemes WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

A common property:

LWE encoding

c = g(pk,m; r) + e(r)

Code-based encoding

c = mG ⊕ e

e can vary by a small degree without affecting decryption.

Decryption fails if e varies by a larger degree.

5

LWE and Code-based schemes WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

A common property:

LWE encoding

c = g(pk,m; r) + e(r)

Code-based encoding

c = mG ⊕ e

e can vary by a small degree without affecting decryption.

Decryption fails if e varies by a larger degree.

5

LWE and Code-based schemes WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

A common property:

LWE encoding

c = g(pk,m; r) + e(r)

Code-based encoding

c = mG ⊕ e

e can vary by a small degree without affecting decryption.

Decryption fails if e varies by a larger degree.

5

LWE and Code-based schemes WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

A common property:

LWE encoding

c = g(pk,m; r) + e(r)

Code-based encoding

c = mG ⊕ e

e can vary by a small degree without affecting decryption.

Decryption fails if e varies by a larger degree.

5

Fujisaki-Okamoto I WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The FO-transform can be used to transform a CPA secure

PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

Output: (c, ss)

1 pick a random m

2 (r , k)← H(m, pk)

3 c ← PKE.CPA.Encrypt(pk,m;r)

/* IND-CPA secure */

4 ss← H(c , k)

5 return (c, ss)

6

Fujisaki-Okamoto I WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The FO-transform can be used to transform a CPA secure

PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

Output: (c, ss)

1 pick a random m

2 (r , k)← H(m, pk)

3 c ← PKE.CPA.Encrypt(pk,m;r)

/* IND-CPA secure */

4 ss← H(c , k)

5 return (c, ss)

6

Fujisaki-Okamoto I WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The FO-transform can be used to transform a CPA secure

PK-cipher into a CCA secure non-malleable KEM:

Algorithm 1: KEM.CCA.Encaps

Input: pk

Output: (c, ss)

1 pick a random m

2 (r , k)← H(m, pk)

3 c ← PKE.CPA.Encrypt(pk,m;r) /* IND-CPA secure */

4 ss← H(c , k)

5 return (c, ss)

6

Fujisaki-Okamoto II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

7

Fujisaki-Okamoto II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

7

Fujisaki-Okamoto II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

7

Fujisaki-Okamoto II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

7

Fujisaki-Okamoto II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

The decapsulation function decodes and compare the re-encoding

with the received ciphertext.

Algorithm 2: KEM.CCA.Decaps

Input: (sk, pk, c)

Output: (ss)

1 m′ ← PKE.CPA.Decrypt(sk,c)

2 (r ′, k ′)← H(m′, pk)

3 c′ ← PKE.CPA.Encrypt(pk,m’;r)

4 if (c′ = c) then return ss′ ← H(c, k)

5 else return ss′ ← H(c, k ′)

6 end if

7 return (c, ss)

memcmp? Constant time?

7

The Attack, Generalized

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 66c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD DD BB AA 99 88 77 66c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD 00 BB AA 99 88 77 66c:

15 CB B8 E2 C6 66 79 1A A1 3Fc’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 77c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 AAc:

15 CB B8 E2 C6 66 79 1A A1 3Fc’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 66c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

The Vulnerability WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

FF EE DD CC BB AA 99 88 77 66c:

FF EE DD CC BB AA 99 88 77 66c’:
memcmp

Assumptions:

1. Not constant time

2. Tiny modification to c → no change to c’

3. Large modification to c → total change of c’

Strategy:

• Do modifications at the end of c

• Find the exact threshold between case 2 and 3.

• Time KEM.CCA.Decaps, repeat as necessary.

• Extract secrets from the KEM-scheme.

8

Decryption Error Oracle WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.

9

Decryption Error Oracle WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.

9

Decryption Error Oracle WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.

9

Decryption Error Oracle WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.

9

Decryption Error Oracle WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 3: Error.Oracle

Input: m, a ciphertext modification d

Output: b (decryption failure or not)

1 (r , k)← H1(m, pk)

2 c ← PKE.CPA.Encrypt(pk,m;r)

3 c ′ ← c + d

4 t ← Measure[KEM.CCA.Decaps(sk,c’)]

5 b ← F (t)

6 return b

where F (t) uses t to determine whether PKE.CPA.Decrypt

returns m′ = m or m′ 6= m.

9

Secret Key Recovery WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 4: Secret Key Recovery

Input: n1

Output: sk

1 for i ← 0; i < n1; i ← i + 1 do

2 begin find (mi , di) such that

3 Error.Oracle(mi , di) = 0 and

4 Error.Oracle(mi , di + 1) = 1

5 end

6 end

7 Use set {((mi , di), 0 ≤ i < n)} to extract the secret key

8 return sk

10

Secret Key Recovery WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 4: Secret Key Recovery

Input: n1

Output: sk

1 for i ← 0; i < n1; i ← i + 1 do

2 begin find (mi , di) such that

3 Error.Oracle(mi , di) = 0 and

4 Error.Oracle(mi , di + 1) = 1

5 end

6 end

7 Use set {((mi , di), 0 ≤ i < n)} to extract the secret key

8 return sk

10

Secret Key Recovery WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 4: Secret Key Recovery

Input: n1

Output: sk

1 for i ← 0; i < n1; i ← i + 1 do

2 begin find (mi , di) such that

3 Error.Oracle(mi , di) = 0 and

4 Error.Oracle(mi , di + 1) = 1

5 end

6 end

7 Use set {((mi , di), 0 ≤ i < n)} to extract the secret key

8 return sk

10

The case of FrodoKEM

FrodoKEM KeyGen WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Simplified:

(r1, r2, seedA, s)← uniform random seeds.

E ← Frodo.SampleMatrix(r2)

Secret Key (S , s)

S ← Frodo.SampleMatrix(r1)

Public Key (seedA,B)

A← Frodo.Gen(seedA)

B ← AS + E (1)

11

FrodoKEM KeyGen WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Simplified:

(r1, r2, seedA, s)← uniform random seeds.

E ← Frodo.SampleMatrix(r2)

Secret Key (S , s)

S ← Frodo.SampleMatrix(r1)

Public Key (seedA,B)

A← Frodo.Gen(seedA)

B ← AS + E (1)

11

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Encaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 5: FrodoKEM.Encaps (simplified)

Input: pk

Output: ss, c

1 m← uniform random plaintext

2 (r1, r2, r3, k)← H(H(pk)||m)

3 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

4 B ′ ← S ′A + E ′

5 C ← S ′B + E ′′ + Frodo.Encode(m)

6 c← Frodo.Pack(B ′||C)

7 return (H(c||k), c)

12

FrodoKEM Decaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 6: FrodoKEM.Decaps (simplified)

Input: c, sk

Output: ss

1 (B ′,C)⇐ Frodo.Unpack(c)

2 m′ ← Frodo.Decode(C − B ′S)

3 (r1, r2, r3, k
′)← H(H(pk)||m′)

4 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

5 B ′′ ← S ′A + E ′

6 C ′ ← S ′B + E ′′ + Frodo.Encode(m′)

7 if B ′||C = B ′′||C ′ then

8 return H(c ||k ′)

9 else

10 return H(c ||s)

11 end

13

FrodoKEM Decaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 6: FrodoKEM.Decaps (simplified)

Input: c, sk

Output: ss

1 (B ′,C)⇐ Frodo.Unpack(c)

2 m′ ← Frodo.Decode(C − B ′S)

3 (r1, r2, r3, k
′)← H(H(pk)||m′)

4 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

5 B ′′ ← S ′A + E ′

6 C ′ ← S ′B + E ′′ + Frodo.Encode(m′)

7 if B ′||C = B ′′||C ′ then

8 return H(c ||k ′)

9 else

10 return H(c ||s)

11 end

13

FrodoKEM Decaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 6: FrodoKEM.Decaps (simplified)

Input: c, sk

Output: ss

1 (B ′,C)⇐ Frodo.Unpack(c)

2 m′ ← Frodo.Decode(C − B ′S)

3 (r1, r2, r3, k
′)← H(H(pk)||m′)

4 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

5 B ′′ ← S ′A + E ′

6 C ′ ← S ′B + E ′′ + Frodo.Encode(m′)

7 if B ′||C = B ′′||C ′ then

8 return H(c ||k ′)

9 else

10 return H(c ||s)

11 end

13

FrodoKEM Decaps WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Algorithm 6: FrodoKEM.Decaps (simplified)

Input: c, sk

Output: ss

1 (B ′,C)⇐ Frodo.Unpack(c)

2 m′ ← Frodo.Decode(C − B ′S)

3 (r1, r2, r3, k
′)← H(H(pk)||m′)

4 (S ′,E ′,E ′′)← for i ∈ {1, 2, 3} do Frodo.SampleMatrix(ri) end

5 B ′′ ← S ′A + E ′

6 C ′ ← S ′B + E ′′ + Frodo.Encode(m′)

7 if B ′||C = B ′′||C ′ then

8 return H(c ||k ′)

9 else

10 return H(c ||s) /* where s is part of secret key */

11 end

13

The combined noise matrix E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

line 2: m′ ← Frodo.Decode(C − B ′S)

C − B ′S = Frodo.Encode(m′) + S ′E − E ′S + E ′′︸ ︷︷ ︸
E ′′′

Since S ′, E ′ and E ′′ are known and Equation (1) ⇒ E = B − AS :

We get linear equations for the values in S , if we know E ′′′.

14

The combined noise matrix E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

line 2: m′ ← Frodo.Decode(C − B ′S)

C − B ′S = Frodo.Encode(m′) + S ′E − E ′S + E ′′︸ ︷︷ ︸
E ′′′

Since S ′, E ′ and E ′′ are known and Equation (1) ⇒ E = B − AS :

We get linear equations for the values in S , if we know E ′′′.

14

The combined noise matrix E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

line 2: m′ ← Frodo.Decode(C − B ′S)

C − B ′S = Frodo.Encode(m′) + S ′E − E ′S + E ′′︸ ︷︷ ︸
E ′′′

Since S ′, E ′ and E ′′ are known and Equation (1) ⇒ E = B − AS :

We get linear equations for the values in S , if we know E ′′′.

14

Figuring out E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

−2D−Bp−1 ≤ E ′′′i ,j < 2D−Bp−1 for all entries i , j in matrix E ′′′.

Where Bp ≤ D and Bp,D ∈ Z are FrodoKEM paramters.

Picking x0 > 0 we get decryption failure when E ′′′i ,j + x0 ≥ 2D−Bp−1

Thus E ′′′i ,j = 2D−Bp−1 − x0

if Error.Oracle(mi , x0) = 1

and Error.Oracle(mi , x0 − 1) = 0.

15

Figuring out E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

−2D−Bp−1 ≤ E ′′′i ,j < 2D−Bp−1 for all entries i , j in matrix E ′′′.

Where Bp ≤ D and Bp,D ∈ Z are FrodoKEM paramters.

Picking x0 > 0 we get decryption failure when E ′′′i ,j + x0 ≥ 2D−Bp−1

Thus E ′′′i ,j = 2D−Bp−1 − x0

if Error.Oracle(mi , x0) = 1

and Error.Oracle(mi , x0 − 1) = 0.

15

Figuring out E ′′′ WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Paraphrasing lemma 2.18 from [Nae+18]:

For successfull decryption:

−2D−Bp−1 ≤ E ′′′i ,j < 2D−Bp−1 for all entries i , j in matrix E ′′′.

Where Bp ≤ D and Bp,D ∈ Z are FrodoKEM paramters.

Picking x0 > 0 we get decryption failure when E ′′′i ,j + x0 ≥ 2D−Bp−1

Thus E ′′′i ,j = 2D−Bp−1 − x0

if Error.Oracle(mi , x0) = 1

and Error.Oracle(mi , x0 − 1) = 0.

15

Graphs, numbers and such

Results WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

I

0 1000 2000 3000 4000 5000

Reference clock-cycles

0.000

0.005

0.010

0.015

0.020

D
en
si
ty

memcmp only

x = 0

x = 1

x = 2D−B

16

Results II WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

1.267 1.268 1.269 1.270 1.271 1.272 1.273

Reference clock-cycles ×107

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

D
en
si
ty

FrodoKEM.Decaps

x = 0

x = 1

x = 2D−B

17

Results III WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Tiny differences
4800

12700000 ≈ 0.04%

Binary search

• One binary search ≈ 97000 decapsulations

• Size of combined noice matrix 1344× 8

Complete Key Recovery

97000× 1344× 8 ≈ 230 queries for FrodoKEM-1344-AES

on a Intel i5-4200U CPU running at 1.6GHz.

18

Results III WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Tiny differences
4800

12700000 ≈ 0.04%

Binary search

• One binary search ≈ 97000 decapsulations

• Size of combined noice matrix 1344× 8

Complete Key Recovery

97000× 1344× 8 ≈ 230 queries for FrodoKEM-1344-AES

on a Intel i5-4200U CPU running at 1.6GHz.

18

Results III WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Tiny differences
4800

12700000 ≈ 0.04%

Binary search

• One binary search ≈ 97000 decapsulations

• Size of combined noice matrix 1344× 8

Complete Key Recovery

97000× 1344× 8 ≈ 230 queries for FrodoKEM-1344-AES

on a Intel i5-4200U CPU running at 1.6GHz.

18

Summary

Conclusions WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

“All our implementations avoid the use of

secret address accesses and secret branches

and, hence, are protected against timing and

cache attacks.”

— FrodoKEM Specification.

Very good, but still not enough

19

Thank you!

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

20

References

[BB03] David Brumley and Dan Boneh. “Remote Timing Attacks Are Practical”.

In: 2003.

[Bru+16] Leon Groot Bruinderink et al. “Flush, Gauss, and Reload - A Cache

Attack on the BLISS Lattice-Based Signature Scheme”. In: 2016,

pp. 323–345. doi: 10.1007/978-3-662-53140-2_16.

[D’A+19] Jan-Pieter D’Anvers et al. “Timing attacks on Error Correcting Codes in

Post-Quantum Secure Schemes.”. In: IACR Cryptology ePrint Archive

2019 (2019), p. 292.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. “A key-recovery

timing attack on post-quantum primitives using the Fujisaki-Okamoto

transformation and its application on FrodoKEM”. In: Crypto (2020).

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems”. In: 1996, pp. 104–113. doi:

10.1007/3-540-68697-5_9.

21

https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/3-540-68697-5_9

[Nae+18] M Naehrig et al. FrodoKEM: Learning With Errors Key

Encapsulation–Algorithm Specifications And Supporting Documentation.

Tech. rep. tech. rep., National Institute of Standards and Technology,

2019. https, 2018.

[Str10] Falko Strenzke. “A Timing Attack against the Secret Permutation in the

McEliece PKC”. In: 2010, pp. 95–107. doi:

10.1007/978-3-642-12929-2_8.

[Str13] Falko Strenzke. “Timing Attacks against the Syndrome Inversion in

Code-Based Cryptosystems”. In: 2013, pp. 217–230. doi:

10.1007/978-3-642-38616-9_15.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Timing

Attack on OpenSSL Constant Time RSA. Cryptology ePrint Archive,

Report 2016/224. https://eprint.iacr.org/2016/224. 2016.

22

https://doi.org/10.1007/978-3-642-12929-2_8
https://doi.org/10.1007/978-3-642-38616-9_15
https://eprint.iacr.org/2016/224

	Preliminaries
	A quick, lightweight, background
	The Attack, Generalized
	The case of FrodoKEM
	Graphs, numbers and such
	Summary
	References

