Time-Memory Tradeoffs for Short Hash Collisions

Akshima University of Chicago

Joint work with David Cash, Andrew Drucker, Hoeteck Wee

This Talk

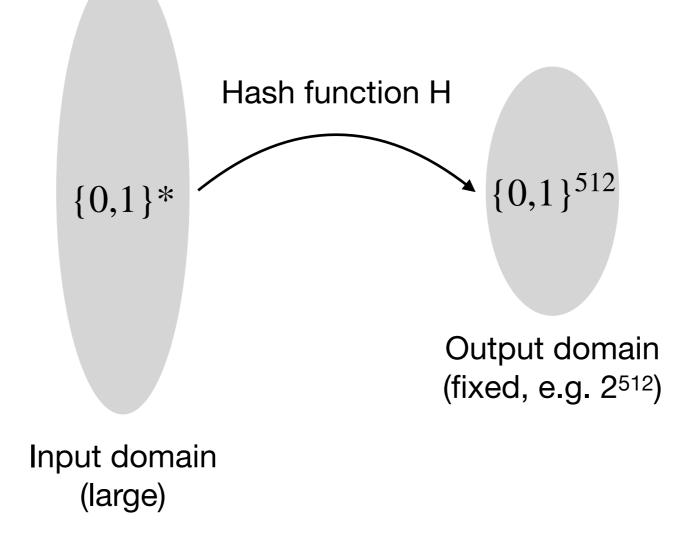
Inspects time-space tradeoffs for finding *short* collisions in Merkle-Damgård hash functions.

Shows gaps in complexity of finding 1, 2 and *B*-block collisions.

Talk Outline

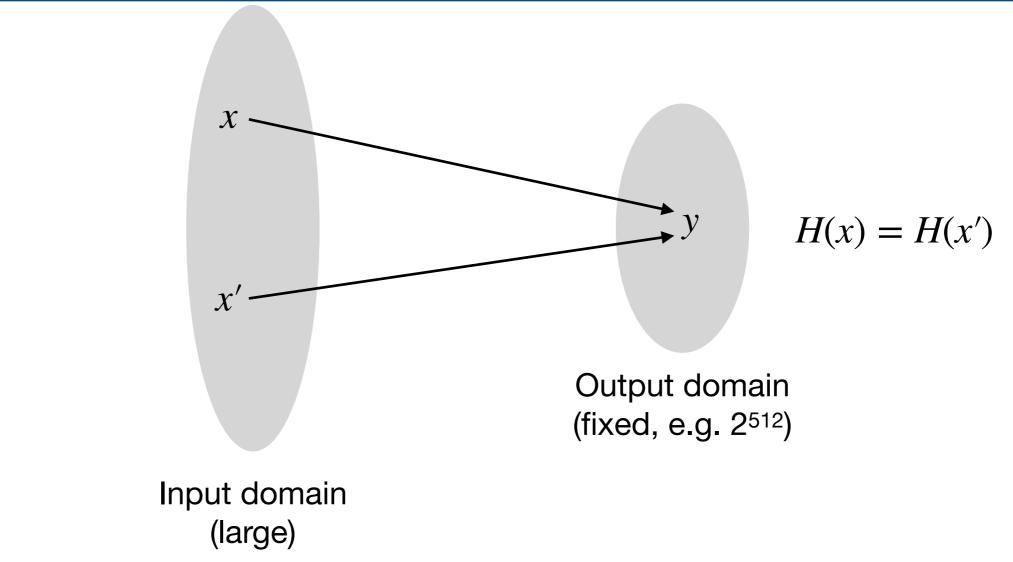
- Basic definitions
- Our work and comparison with prior work
- Why prior techniques cannot extend to short collisions
- Our technique for
 - Bound on 2-block collisions
 - Bound on zero-walk adversaries
- Conclusion

Cryptographic Hash Functions



- Widely deployed practical hashes (SHA512, SHA3)
- Many security properties required

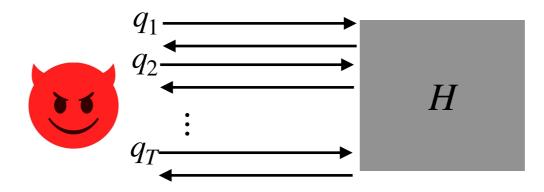
Collisions in Hash Functions



- Collisions damaging in practice (e.g. in authentication)
- Finding collisions should be very hard (e.g. 2²⁵⁶ time)

Modeling Hashes: The ROM [Bellare-Rogaway,96]

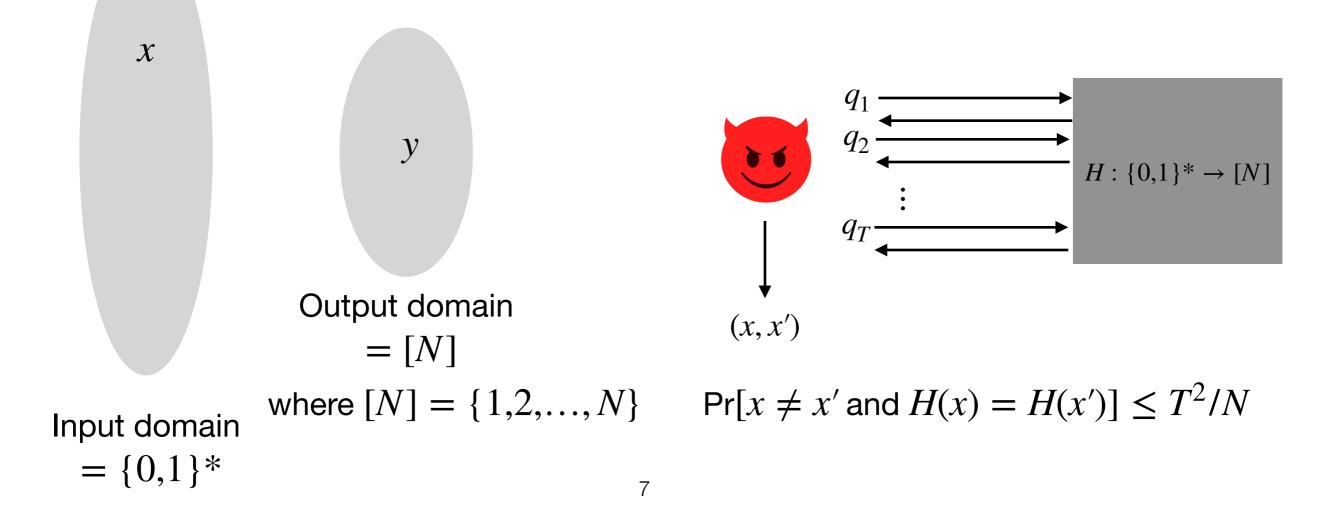
- Can't actually prove collisions are hard to find (P vs NP)
- Instead, pretend H is a random function and give proofs
 - Called the "random oracle model" (ROM)
- Adversary is computationally unbounded and deterministic.



T: # queries

Finding Collisions in the ROM

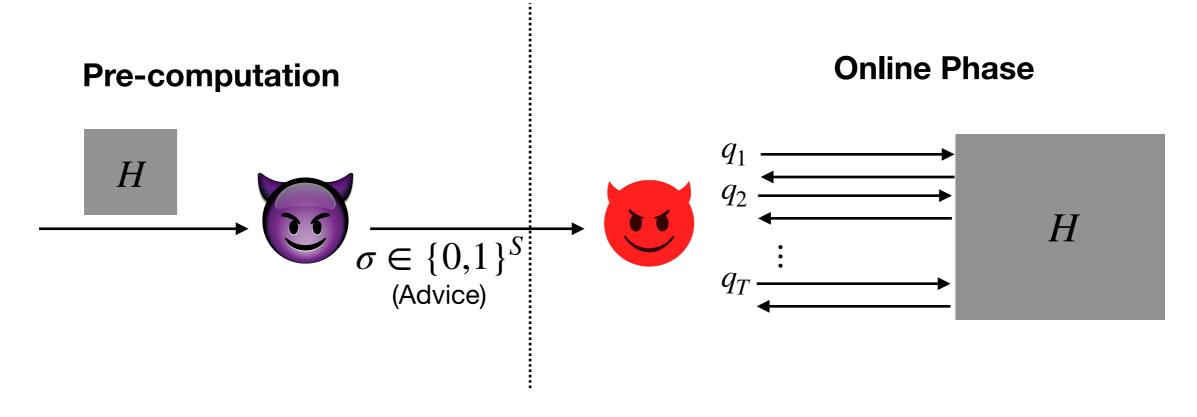
- Can prove unconditionally that a random function is collision resistant
- T queries: T²/N probability of success



Pre-Computation in the ROM

[Unruh,07]

- **Unbounded** pre-computation produces S bits of advice
- **Bounded** T number of queries in online phase

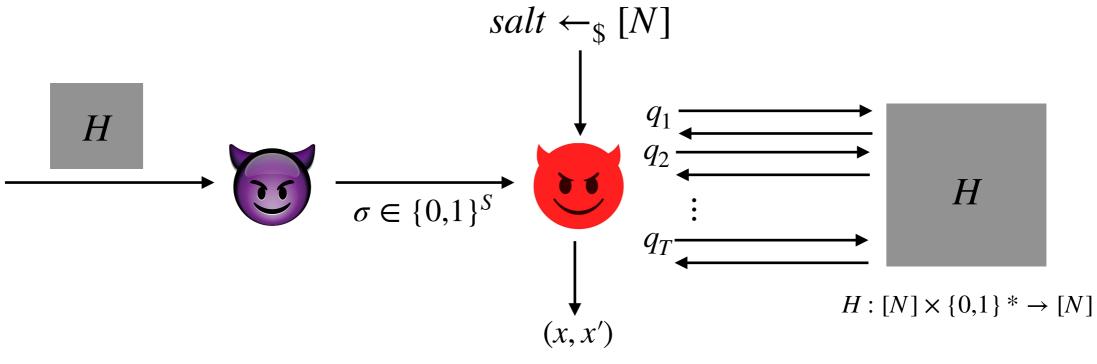


• Trivial attack: Just precompute a collision.

Salting to Confound Pre-Computation

[Dodis-Guo-Katz,17]

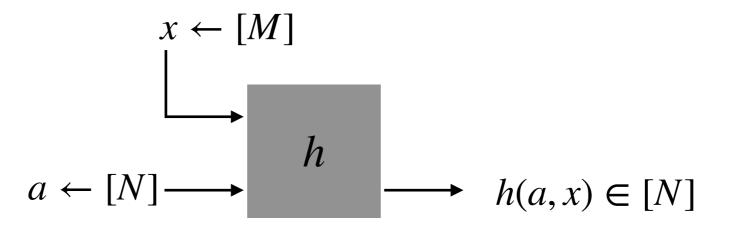
- Require adversary to find collision with a random prefix, called a salt
 - Adversary learns salt only in online phase
 - Defeats trivial attack



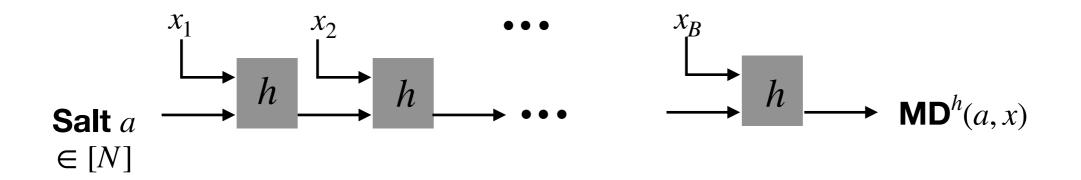
 $\Pr[x \neq x' \text{ and } H(salt, x) = H(salt, x')] = \tilde{\theta}\left((S + T^2)/N\right)$

 Showed optimal attack is to write down S collisions and hope there is a collision for input salt or perform birthday.

Merkle-Damgård Hash Functions



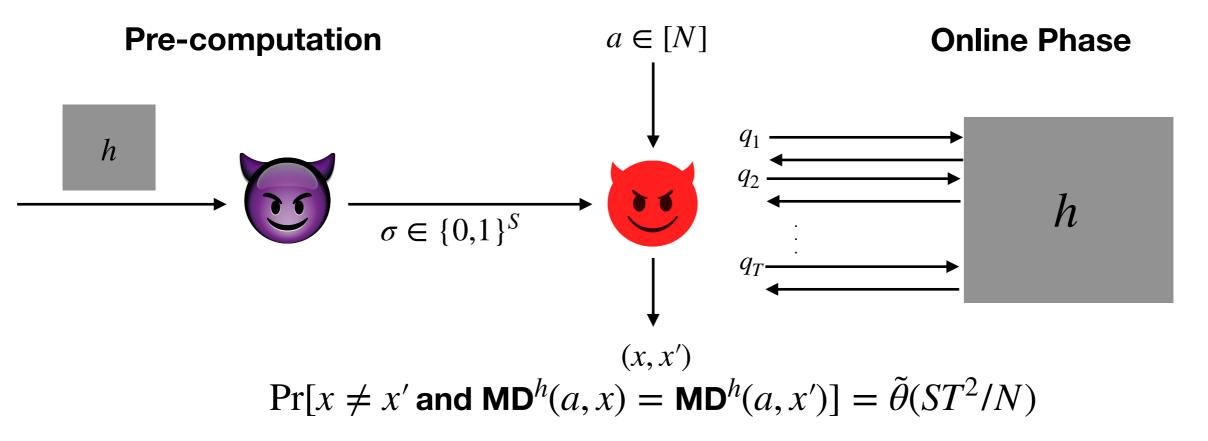
Input $x = x_1 | | \dots | | x_B, x_i \in [M]$



Salting Merkle-Damgård [Coretti-Dodis-Guo-Steinberger,18]

h is modeled as RO

• Adversary must find salted collision in H = MD^h



• Non-trivial *time-space tradeoffs* improve over birthday using advice ($T = S = N^{1/3}$)

Talk Outline

- Basic definitions
- Our work and comparison with prior work
- Why prior techniques cannot extend to short collisions
- Our technique for
 - Bound on 2-block collisions
 - Bound on zero-walk adversaries
- Conclusion

• Same model as before, but adversary is required to find colliding messages with *B* or fewer blocks.

• Same model as before, but adversary is required to find colliding messages with *B* or fewer blocks.

<u>Result 1</u>: Qualitative time-space hardness jumps from B = 1, B = 2, and unbounded *B* lengths.

• Via new concentration+compression-based techniques

• Same model as before, but adversary is required to find colliding messages with *B* or fewer blocks.

<u>Result 1</u>: Qualitative time-space hardness jumps from B = 1, B = 2, and unbounded *B* lengths.

- Via new concentration+compression-based techniques
- **Open**: Fine-grained bounds for B = 3, 4, ...

• Same model as before, but adversary is required to find colliding messages with *B* or fewer blocks.

<u>Result 1</u>: Qualitative time-space hardness jumps from B = 1, B = 2, and unbounded *B* lengths.

- Via new concentration+compression-based techniques
- **Open**: Fine-grained bounds for B = 3, 4, ...

<u>Result 2</u>: Impossibility for restricted class of attacks on general B (includes all known attacks).

Our Concrete Results

Work	# Blocks in Collision	Advantage Bound S: advice size T: Queries
[DGK17]	1	$\tilde{\theta}\left(\frac{S+T^2}{N}\right)$
[CDGS18]	Unbounded	$\tilde{\theta}\left(\frac{ST^2}{N}\right)$
Our Work	В	$\tilde{\Omega}\left(\frac{STB}{N}\right)$
Our Work	<i>B</i> (only for restricted adversary)	$\tilde{O}\left(\frac{STB}{N}\right)$
Our Work	2	$\tilde{\theta}\left(\frac{ST}{N}\right)$

Why Short Collisions?

- Consider SHA2: N=2²⁵⁶, M=2⁵¹²
 - When S=2⁷⁰, B=T= 2⁹³
 - Collisions have to be over 293 blocks long

Why Short Collisions?

- Consider SHA2: N=2²⁵⁶, M=2⁵¹²
 - When S=2⁷⁰, B=T= 2⁹³
 - Collisions have to be over 293 blocks long
- Say we want B= 2²⁰, then the best known attack needs T= 2¹⁶⁶

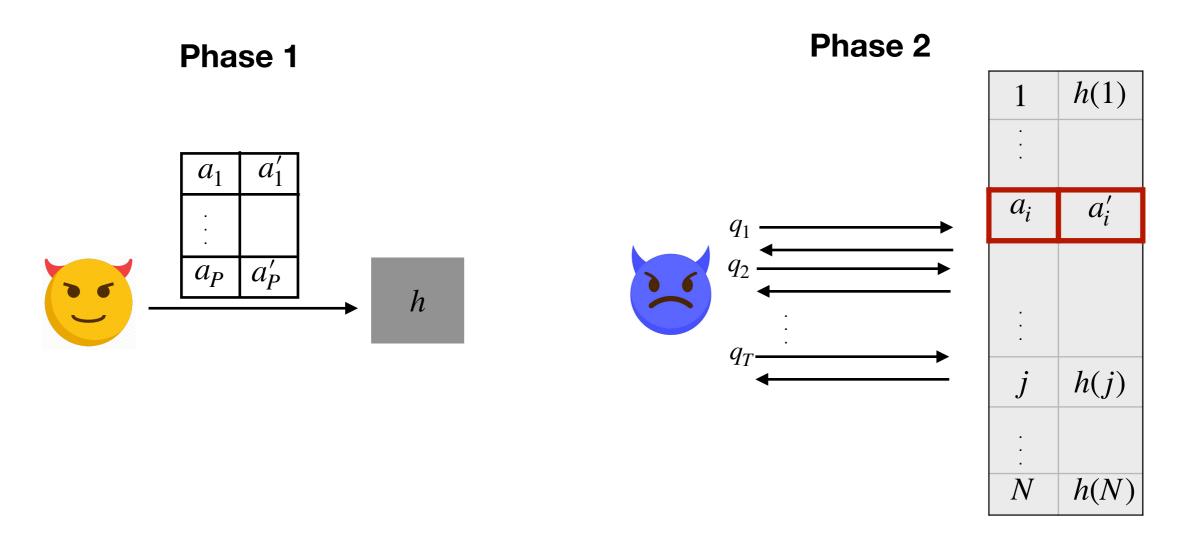
Talk Outline

- Basic definitions
- Our work and comparison with prior work
- Why prior techniques cannot extend to short collisions
- Our technique for
 - Bound on 2-block collisions
 - Bound on zero-walk adversaries
- Conclusion

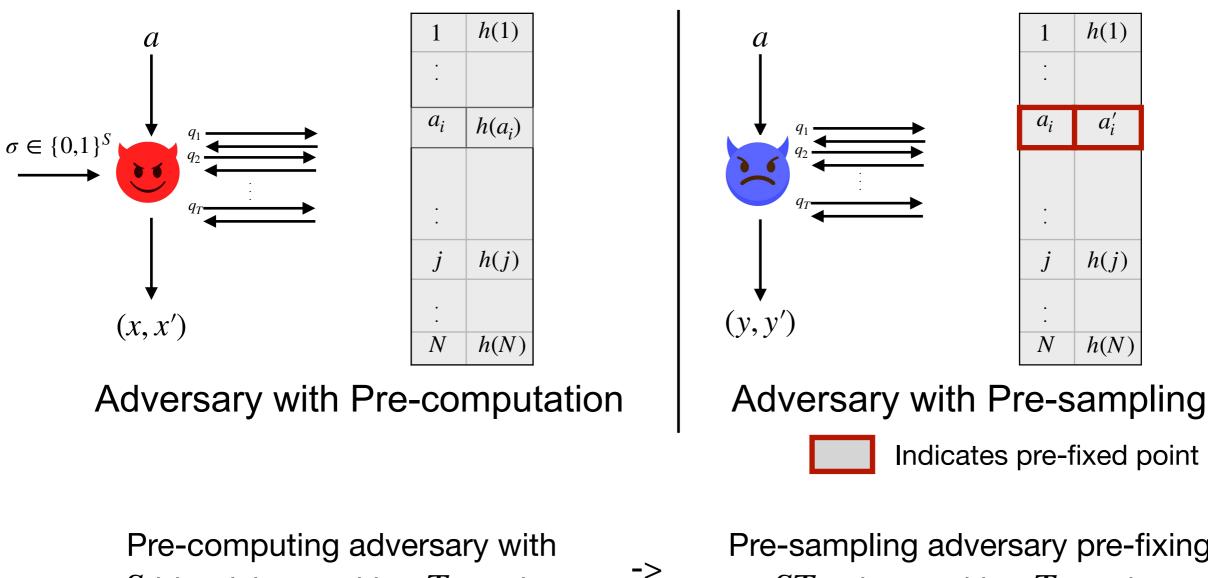
Pre-Sampling Model

[Unruh,07]

- Adversary hard-codes some points before oracle chosen
- Online phase gets oracle, no advice



Pre-Computation to Pre-Sampling



S-bit advice, making T queries

Pre-sampling adversary pre-fixing ST points making T queries

[Unruh,07]

h(1)

 a'_i

h(j)

h(N)

 a_i

• .

j

•

•

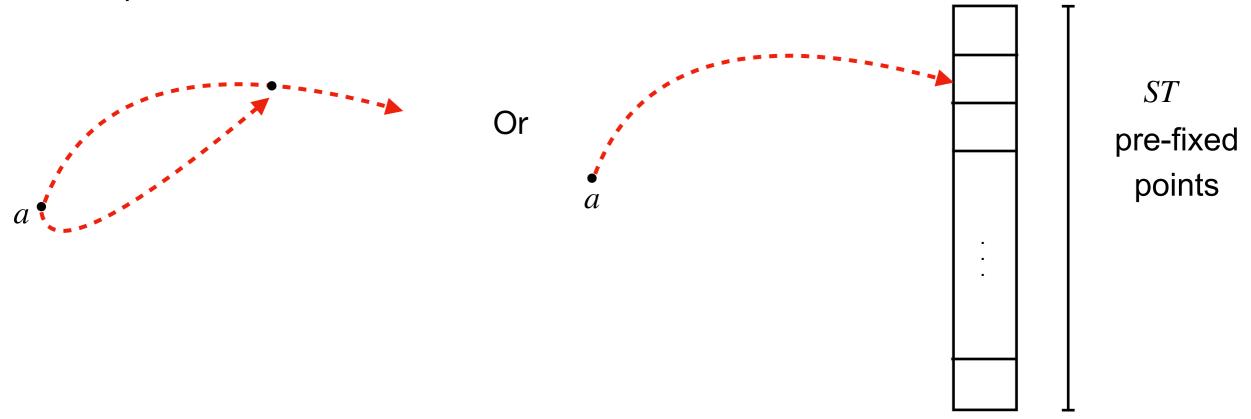
N

Indicates pre-fixed point

Proving impossibility of pre-sampling adversary is sufficient.

Pre-Sampling Bound, then Pre-Computation Bound [Unruh,07]

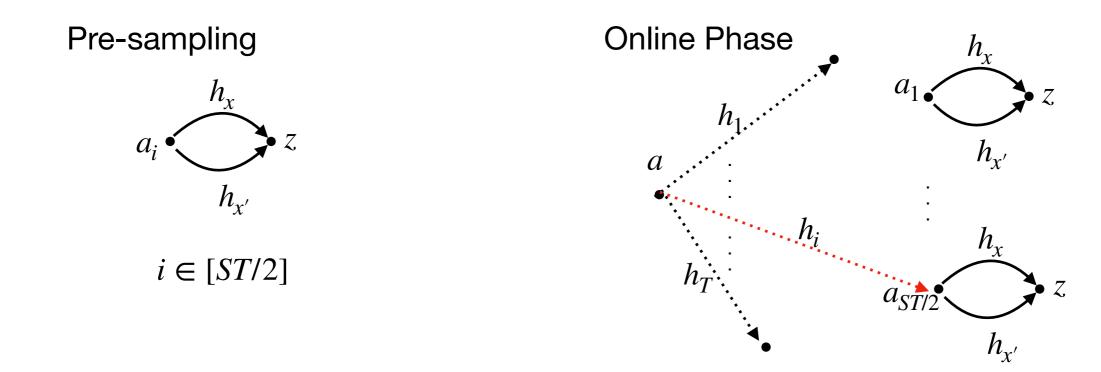
• Analyzing MD-based hash in the pre-sampling model with ST fixed points and T queries to find unbounded collisions.



This proves a bound of $O(ST^2/N)$ on finding unbounded collisions in MD hashes with Pre-computation.

Pre-Sampling is Length Insensitive

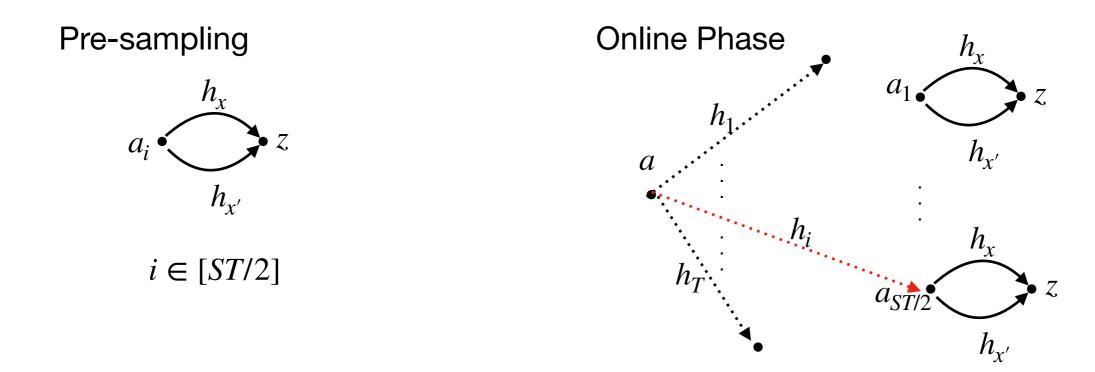
We give a 2-block collision finding attack with pre-sampling that has advantage $\Omega(ST^2/N)$.



Thus, short collisions are as easy as long collisions for pre-sampling

Pre-Sampling is Length Insensitive

We give a 2-block collision finding attack with pre-sampling that has advantage $\Omega(ST^2/N)$.



Thus, short collisions are as easy as long collisions for pre-sampling We prove short collisions are harder than long collisions for pre-computation.

Compression Technique

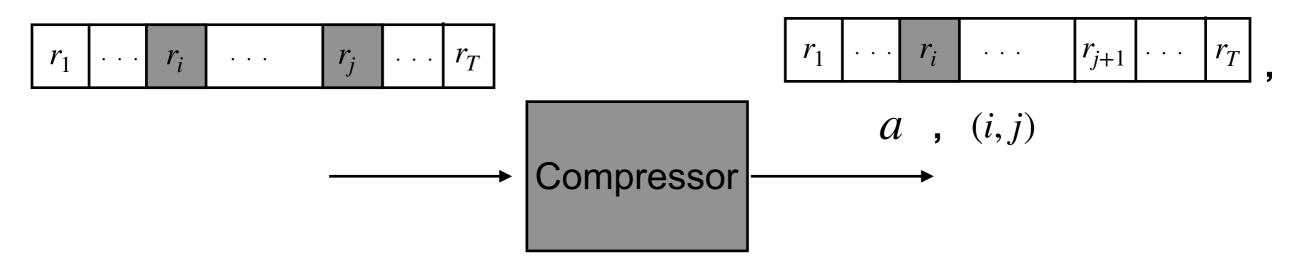
[Dodis-Guo-Katz,17]

• Shannon bound: $\mathbb{E}[|out|] \ge entropy(h)$

Compression Technique

[Dodis-Guo-Katz,17]

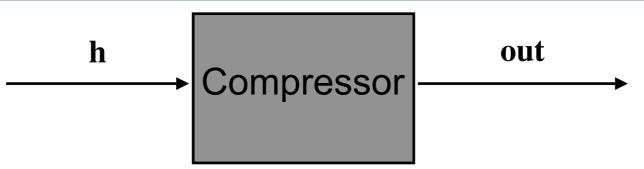
- Shannon bound: $\mathbb{E}[|out|] \ge entropy(\mathbf{h})$
- Say adversary \mathscr{A} wins on some salt a, making queries (q_1, \ldots, q_T) and getting responses (r_1, \ldots, r_T) . Then $\exists i, j$ such that $r_i = r_j$.



Say \mathscr{A} wins on ε fraction of salts. Then compressor repeats this on every winning salt.

Compression Technique

[Dodis-Guo-Katz,17]



- Shannon bound: $\mathbb{E}[|out|] \ge entropy(h)$
- Say \mathscr{A} wins on ε fraction of salts. Then compressor compresses **h** by at least $(\varepsilon N \cdot \log(\varepsilon N/T^2) S)$ bits on average.
- This contradicts the Shannon bound and gives $\varepsilon \leq (S + T^2)/N$.

Extending Compression Technique Is Not Trivial

- Say some 2-block collision finding adversary \mathscr{A} wins on ε fraction of salts on \mathbf{h} .
- Want to delete εN entries in **h** with same output as a prior entry.
- For 2-block collisions there may not be εN such unique entries.

Extending Compression Technique Is Not Trivial

- Say some 2-block collision finding adversary A wins on *ɛ* fraction of salts on h.
- Want to delete εN entries in **h** with same output as a prior entry.
- For 2-block collisions there may not be εN such unique entries.

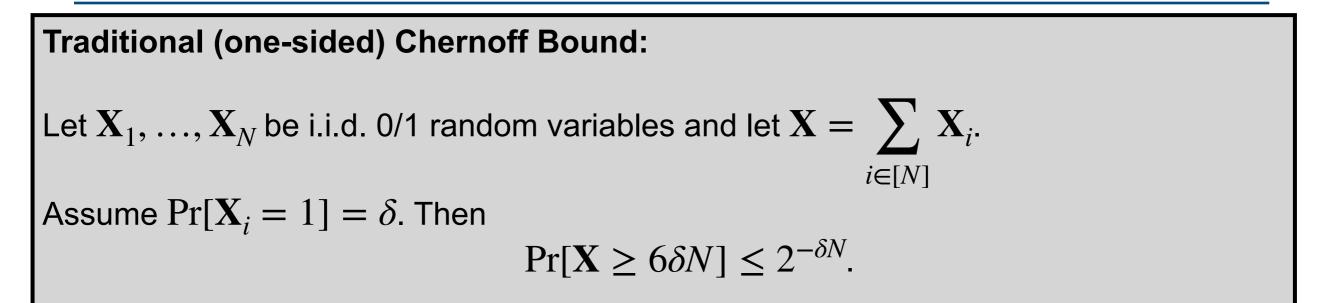


Finding collision for a salt is not independent of finding collision for other salts.

Talk Outline

- Basic definitions
- Our work and comparison with prior work
- Why prior techniques cannot extend to short collisions
- Our technique for
 - Bound on 2-block collisions
 - Bound on zero-walk adversaries
- Conclusion

Chernoff for Dependent Indicators



Chernoff for Dependent Indicators

Traditional (one-sided) Chernoff Bound:

Let $\mathbf{X}_1, \dots, \mathbf{X}_N$ be i.i.d. 0/1 random variables and let $\mathbf{X} = \sum_{i \in [N]} \mathbf{X}_i$.

Assume $\Pr[\mathbf{X}_i = 1] = \delta$. Then

 $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-\delta N}.$

Limited-dependence, "bounded large moments" Chernoff:

Let $\mathbf{X}_1, \dots, \mathbf{X}_N$ be any 0/1 random variables and let $\mathbf{X} = \sum_{i \in [N]} \mathbf{X}_i$. Fix u, δ and assume for all u-sized subsets $U \subseteq [N]$ that $p_U = \Pr[\Pi_{i \in U} \mathbf{X}_i = 1] \le \delta^u$. Then $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-u}$. [Impagliazzo-Kabanets'10]

• Allows \mathbf{X}_i to be correlated. Only requires bound on large moments of sum.

Chernoff with Even More Dependent Indicators

Limited-dependence, "bounded large moments" Chernoff:

Let $\mathbf{X}_1, \dots, \mathbf{X}_N$ be any 0/1 random variables and let $\mathbf{X} = \sum_{i \in [N]} \mathbf{X}_i$. Fix u, δ and assume for all u-sized subsets $U \subseteq [N]$ that $p_U = \Pr[\prod_{i \in U} \mathbf{X}_i = 1] \le \delta^u$. Then $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-u}$. [Impagliazzo-Kabanets'10]

Chernoff with Even More Dependent Indicators

Limited-dependence, "bounded large moments" Chernoff:

Let $\mathbf{X}_1, \ldots, \mathbf{X}_N$ be any 0/1 random variables and let $\mathbf{X} = \sum \mathbf{X}_i$.

Fix u, δ and assume for all u-sized subsets $U \subseteq [N]$ that $p_U = \Pr[\prod_{i \in U} \mathbf{X}_i = 1] \leq \delta^u$. Then

 $i \in |N|$

 $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-u}.$

[Impagliazzo-Kabanets'10]

In our application, some p_U may be large, so does not apply. Instead we use an easy-to-prove modification:

Chernoff with Even More Dependent Indicators

Limited-dependence, "bounded large moments" Chernoff:

Let $\mathbf{X}_1, \dots, \mathbf{X}_N$ be any 0/1 random variables and let $\mathbf{X} = \sum_{i \in [N]} \mathbf{X}_i$. Fix u, δ and assume for all u-sized subsets $U \subseteq [N]$ that $p_U = \Pr[\prod_{i \in U} \mathbf{X}_i = 1] \le \delta^u$. Then

 $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-u}.$

[Impagliazzo-Kabanets'10]

Our limited-dependence, "bounded average large moments" Chernoff:

Let $\mathbf{X}_1, \ldots, \mathbf{X}_N$ be any 0/1 random variables and let $\mathbf{X} = \sum \mathbf{X}_i$.

Fix u, δ . Assume that $p_U = \Pr[\prod_{i \in U} X_i = 1]$ is at most δ^u when averaged over $U \subseteq [N]$. Then

 $\Pr[\mathbf{X} \ge 6\delta N] \le 2^{-u}.$

 $i \in [N]$

[Impagliazzo,11]

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

 $\Pr[\text{Adversary succeeds on all salts in } U] \leq \delta^u$

h

[Impagliazzo,11]

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

h

 $\Pr[\text{Adversary succeeds on all salts in } U] \leq \delta^u$

Step 2: Apply dependent Chernoff (\mathbf{X}_i indicates success on i-th salt):

 $\Pr[\text{Adversary succeeds on any } 6\delta N \text{ salts}] \le 2^{-u}$

[Impagliazzo,11]

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

 $\Pr[\text{Adversary succeeds on all salts in } U] \leq \delta^u$

Step 2: Apply dependent Chernoff (\mathbf{X}_i indicates success on *i*-th salt):

 $\Pr[\text{Adversary succeeds on any } 6\delta N \text{ salts}] \le 2^{-u}$

Step 3: Apply union bound over all 2^{S} possible advice strings:

Pr[\exists advice: Adversary succeeds on any $6\delta N$ salts] $\leq 2^{S} \cdot 2^{-u}$

[Impagliazzo,11]

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

 $\Pr[\text{Adversary succeeds on all salts in } U] \leq \delta^u$

Step 2: Apply dependent Chernoff (\mathbf{X}_i indicates success on *i*-th salt):

 $\Pr[\text{Adversary succeeds on any } 6\delta N \text{ salts}] \le 2^{-u}$

Step 3: Apply union bound over all 2^{S} possible advice strings:

 $\Pr[\exists advice: Adversary succeeds on any 6\delta N salts] \le 2^{S} \cdot 2^{-u}$

Conclude bound $6\delta + 2^{S} \cdot 2^{-u}$ on adversaries with advice.

Concretely: $u = \Omega(S + \log N)$, $\delta =$ desired bound (e.g. O(ST/N)).

Impagliazzo's Method, Modified

Step 1: Analyze adversary w/o advice on a random set U of salts:

 $\Pr_{\mathbf{h},\mathbf{U}} \left[\text{Adversary succeeds on all salts in } \mathbf{U} \right] \leq \delta^u$

Step 2: Apply dependent Chernoff (\mathbf{X}_i indicates success on *i*-th salt):

 $\Pr[\text{Adversary succeeds on any } 6\delta N \text{ salts}] \le 2^{-u}$

Step 3: Apply union bound over all 2^{S} possible advice strings:

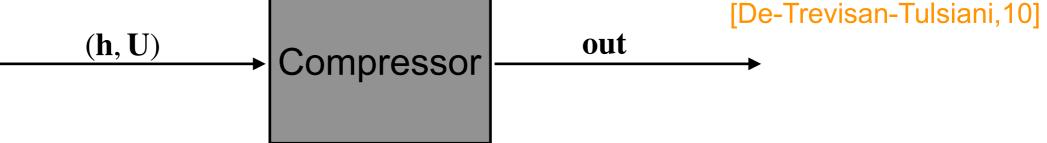
Pr[\exists advice: Adversary succeeds on any $6\delta N$ salts] $\leq 2^{S} \cdot 2^{-u}$

Conclude bound $6\delta + 2^S \cdot 2^{-u}$ on adversaries with advice.

Concretely: $u = \Omega(S + \log N)$, δ = desired bound (e.g. O(ST/N)).

Step 1 via Compression

Step 1: Analyze adversary w/o advice on a random set U of salts:
Pr [Adversary succeeds on all salts in U] ≤ δ^u

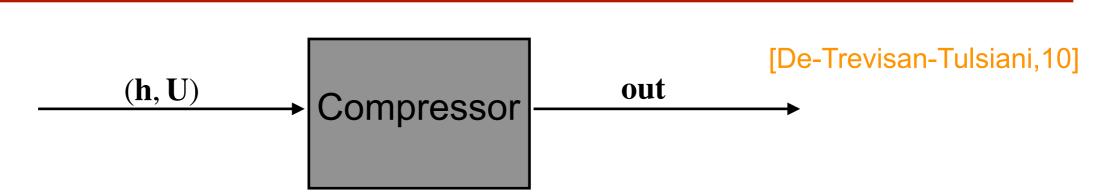


• Shannon bound: $\mathbb{E}[|out|] \ge entropy(h, U)$

Step 1 via Compression

Pr [Adversary succeeds on all salts in U] $\leq \delta^u$

• Step 1: Analyze adversary w/o advice on a random set U of salts:



- Shannon bound: $\mathbb{E}[\,|\,out\,|\,] \geq \mathsf{entropy}(h,U)$
- Plan:
 - 1. Say some adversary \mathscr{A} succeeds on (\mathbf{h},\mathbf{U}) with large probability, say ε .
 - 2. Fix some (h, U) on which \mathscr{A} wins.

h,U

- 3. We give a compressor that uses \mathscr{A} to save $\log(1/\delta)$ bits for each salt in U.
- 4. This contradicts the Shannon bound and gives $\varepsilon \leq \delta^{u}$.

Bound on 2-block Collisions

Analyze adversary w/o advice on a random set U of salts and prove: Pr [Adversary finds 2-block collisions on all salts in U] $\leq (ST/N)^{u}$ h,U

Fix (*h*, *U*) and consider an adversary that finds 2-block collisions on all salts in *U*.
Compress both *h* and *U* at a total of *u* spots. In each spot, compressor stores at most O(log S + log T) bits to save log N bits.

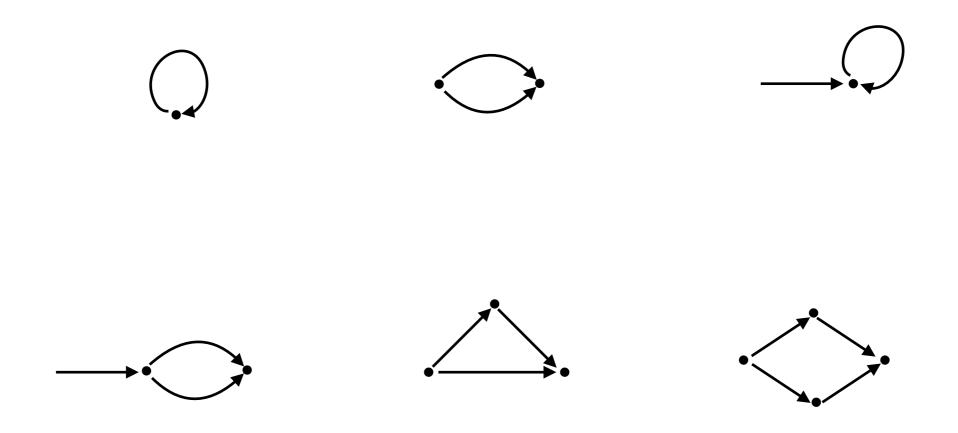
Bound on 2-block Collisions

Analyze adversary w/o advice on a random set U of salts and prove: Pr [Adversary finds 2-block collisions on all salts in U] $\leq (ST/N)^u$ h,U

Fix (h, U) and consider an adversary that finds 2-block collisions on all salts in U.
Compress both h and U at a total of u spots. In each spot, compressor stores at most O(log S + log T) bits to save log N bits.

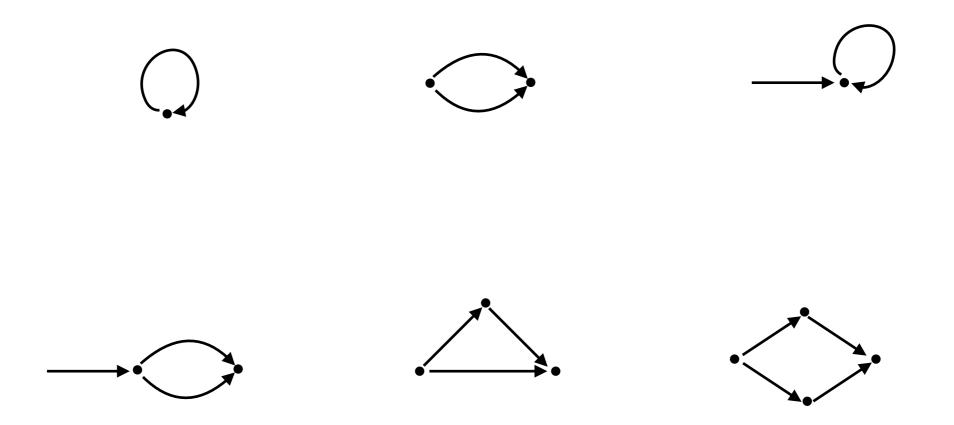
This compressor is complicated (see paper).

Types of 2-block Collisions



Compressor needs to handle each of these types differently.

Types of 2-block Collisions



Compressor needs to handle each of these types differently.

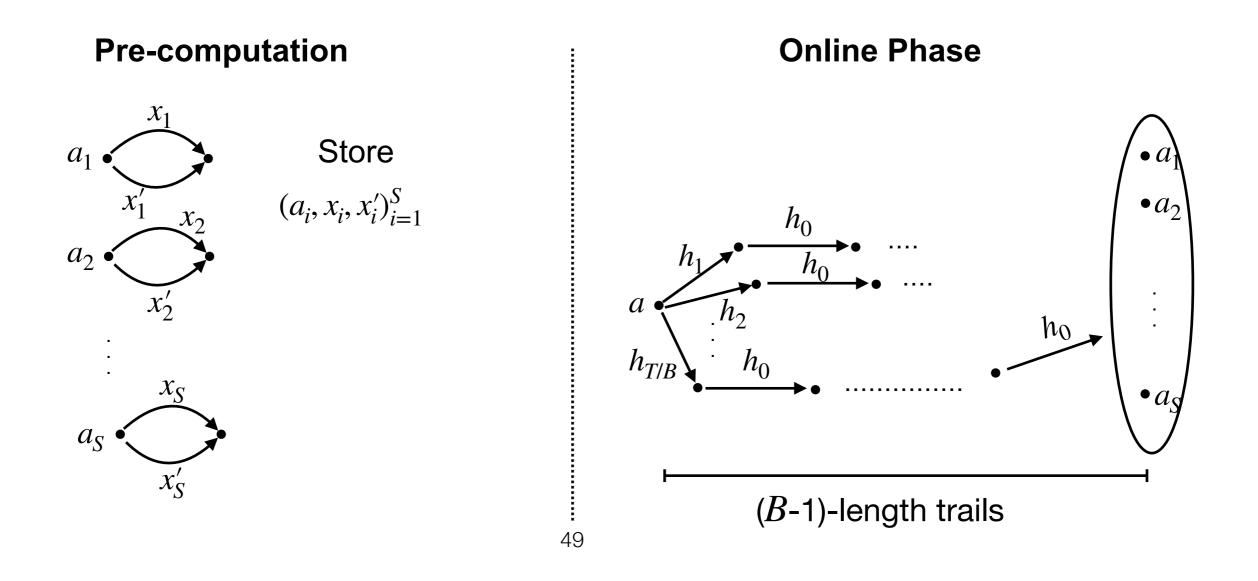
Types of B-block collisions increase exponentially with B. Thus arbitrary B is hard.

Talk Outline

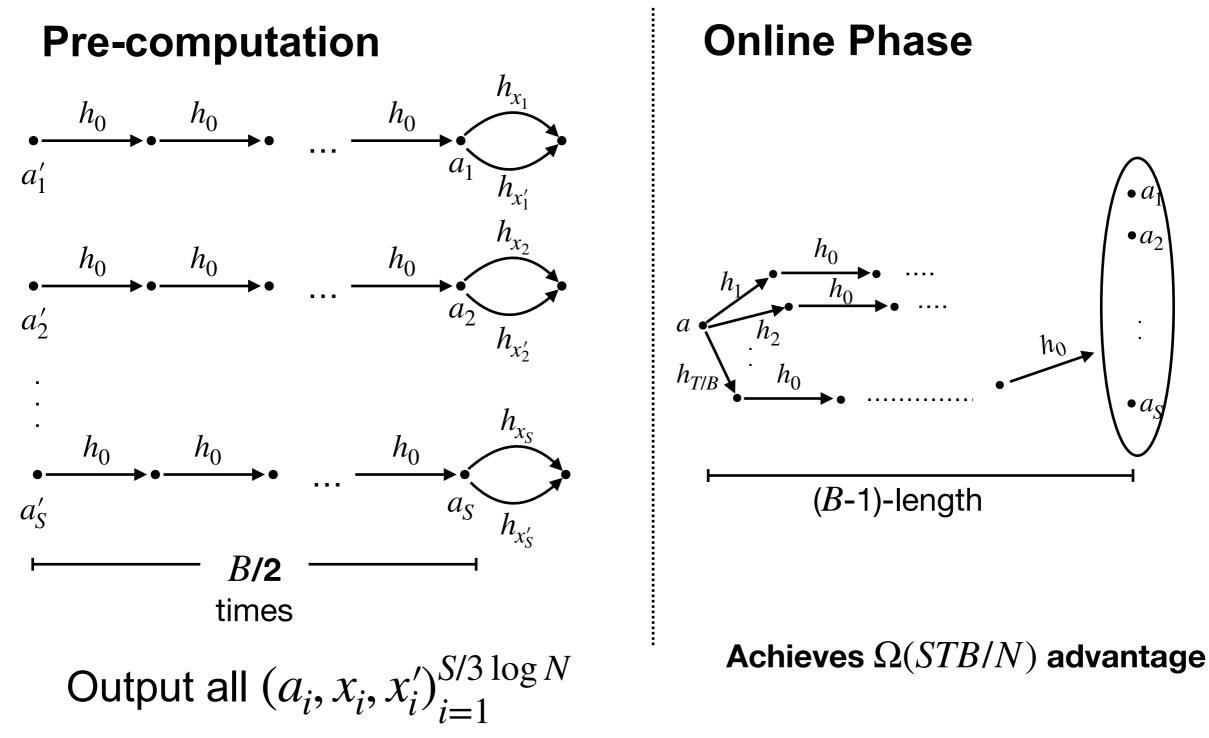
- Basic definitions
- Our work and comparison with prior work
- Why prior techniques cannot extend to short collisions
- Our technique for
 - Bound on 2-block collisions
 - Bound on zero-walk adversaries
- Conclusion

Definition of Zero-Walk Adversary

• We define a restricted class of pre-computing adversary, referred as Zero-Walk adversary.

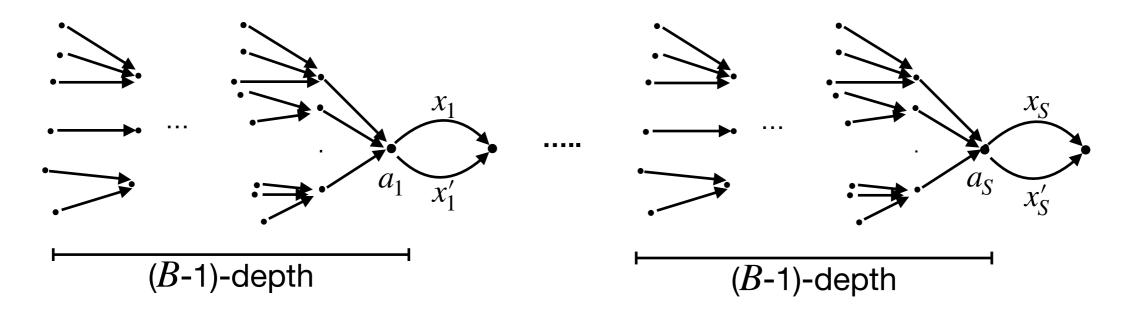


Best Known *B*-block Collision Finding Adversary



Are There Better Zero-Walk Adversaries?

- Adversary could store collisions for salts with large B-depth trees leading to them
- Advantage would be O(ST * (tree-size)/BN)



• We prove that the largest *B*-depth tree has size $\tilde{O}(B^2)$ with high probability, so previous strategy is optimal.

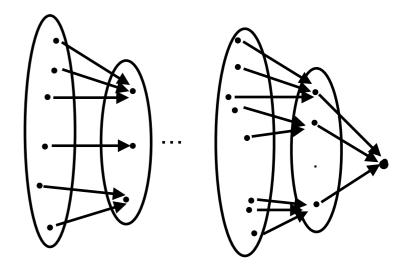
Size B-depth Trees in Random Functional Graphs

Bounded B-depth trees of Random Functional Graphs:

For a random function $\mathbf{f} : [N] \to [N]$ functions, the probability there exists a *B*-depth tree in the graph for \mathbf{f} with $\tilde{\Omega}(B^2)$ nodes is at most 1/N.

A naive approach would be using Chernoff and then applying union bound over *B* depths but that gives a loose bound of $\tilde{O}(B^3)$.

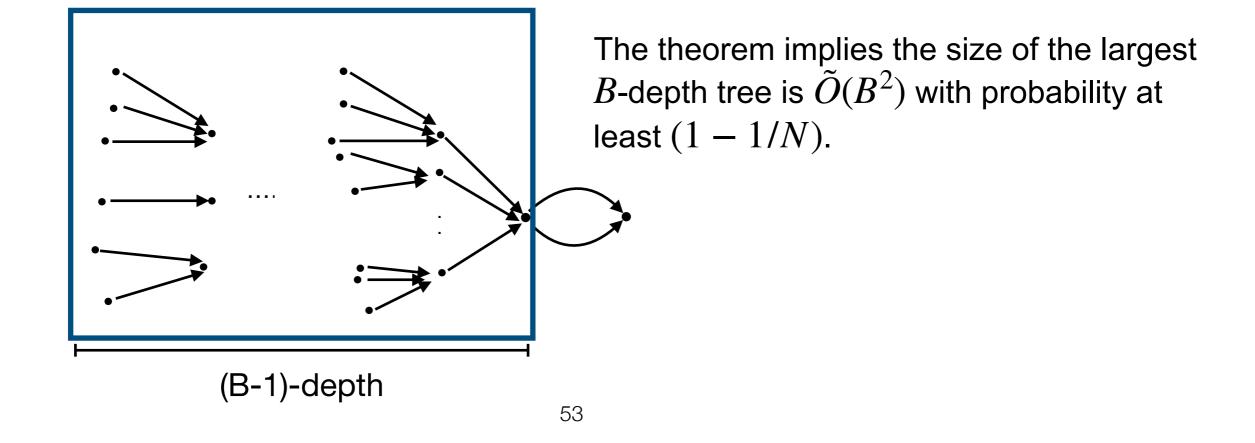
We obtain a tighter bound in the paper.



Bound on Zero Walk Adversary

Bounded B-depth trees of Random Functional Graphs:

For a random function $\mathbf{f} : [N] \to [N]$ functions, the probability there exists a *B*-depth tree in the graph for \mathbf{f} with $\tilde{\Omega}(B^2)$ nodes is at most 1/N.



Conclusions

We present new techniques that gives us the following results:

<u>Result 1</u>: For any 2-block collision finding adversary, its advantage is $\tilde{\theta}(ST/N)$.

<u>Result 2</u>: For arbitrary B-block collision finding "zero walk" adversary, its advantage is $\tilde{\theta}(STB/N)$.

Thank you.

https://eprint.iacr.org/2020/770.pdf