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This Talk

Inspects time-space tradeoffs for finding short

collisions in Merkle-Damgard hash functions.

Shows gaps in complexity of finding 1, 2 and B-block

collisions.
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Cryptographic Hash Functions

Hash function H

/_\ {0,1}512

0,117

Output domain
(fixed, e.qg. 2512

Input domain
(large)

e \Videly deployed practical hashes (SHA512, SHA3)
e Many security properties required
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Collisions in Hash Functions

//y H(x) = H(x")
x/

Output domain
(fixed, e.g. 2512

Input domain
(large)

e Collisions damaging in practice (e.g. in authentication)
e Finding collisions should be very hard (e.g. 225 time)
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Modeling Hashes: The ROM

e Can't actually prove collisions are hard to find (P vs NP)
¢ Instead, pretend H is a random function and give proofs
e Called the "random oracle model” (ROM)
e Adversary is computationally unbounded and deterministic.

T: # queries



Finding Collisions in the ROM

e (Can prove unconditionally that a random function is
collision resistant
T queries: T2/N probability of success

Output domain
= [NV]

where [N] = {1,2,...,N}  Pr[x # x'and H(x) = H(x)] < T?/N

(x, x7)

Input domain

= 10,1}*

v



Pre-Computation in the ROM

 Unbounded pre-computation produces § bits of advice

[Unruh,07]

e Bounded 71 number of queries in online phase

Pre-computation Online Phase
. 0 :
<
4> >
o € {0, l}S :

(Advice) 9T P >

e Trivial attack: Just precompute a collision.



Salting to Confound
Pre-Computation

e Require adversary to find collision with a random prefix, called a salt
e Adversary learns salt only in online phase
e Defeats trivial attack

salt <¢ [N]

l 9 >

D) I
> > <
c E {O,l}S ' :

qr >
<
l H:[N]x{0,1}* - [N]
(x, x’)

Pr[x # x’ and H(salt, x) = H(salt,x)] = 6 ((S + T2)/N)

e Showed optimal attack is to write down S collisions and hope there is a
collision for input salt or perform birthday.
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Merkle-Damgard Hash

Functions
x «— [M]
a < [N]—>.—> h(a,x) € [N]
Input x =x,||...||xz x; € [M]

.

Salta —
€ [N]

n-m ..
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Salting Merkle-Damgard

[Coretti-Dodis-Guo-Steinberger,18]

e h is modeled as RO

e Adversary must find salted collision in H = MDn

Pre-computation a € [N] Online Phase

|

. 4
U )
> > <
o€ {0,1}° ' :
l qr—
<
(x, x')

Pr[x # x"and MD"(a, x) = MD"(a, x")] = O(ST?/N)

e Non-trivial time-space tradeoffs improve over birthday using
advice (T = S = N'3)
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Our Work

Initiate study of short collision-finding in Merkle-Damgard
hashes with pre-computation

 Same model as before, but adversary is required to find
colliding messages with B or fewer blocks.



Our Work

Initiate study of short collision-finding in Merkle-Damgard
hashes with pre-computation
 Same model as before, but adversary is required to find

colliding messages with B or fewer blocks.

* Via new concentration+compression-based techniques
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Our Work
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Our Work

Initiate study of short collision-finding in Merkle-Damgard
hashes with pre-computation

 Same model as before, but adversary is required to find
colliding messages with B or fewer blocks.

Result 1: Qualitative time-space hardness jumps from

B =1, B =72, and unbounded B lengths.

* Via new concentration+compression-based techniques
- Open: Fine-grained bounds for B = 3.,4,...

Result 2: Impossibility for restricted class of attacks on
general B (includes all known attacks).
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Our Concrete Results

Work

[DGK17]

[CDGS18]

Our Work

Our Work

Our Work

# Blocks in Collision

Unbounded

B

B
(only for restricted

adversary)

2

Advantage
Bound
S: advice size
T: Queries
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Why Short Collisions?

e Consider SHAZ2: N=225, M=2512
e \When S=270 B=T= 293
e Collisions have to be over 29 blocks long
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Why Short Collisions?

* Consider SHA2: N=22%, M=251
o When S=270, B=T= 293
e Collisions have to be over 29 blocks long

e Say we want B= 220, then the best known attack
needs T= 2166
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Pre-Sampling Model

e Adversary hard-codes some points before oracle chosen
e Online phase gets oracle, no advice

Phase 1 Phase 2

D 4 a a’
P P{™p
| ’

Jj h()

N h(N)
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Pre-Computation to
Pre-Sampling

a 1 () a 1 h(D
l 4 | h(a, l 1
e {0,1}5 22'4 : (a,) Zz‘ :
—_—) ' < _ ' << :
5114 : > q1< . >
l Jj o h()) l j o k()
(x, X') N AV (¥.) N hV)
Adversary with Pre-computation Adversary with Pre-sampling
D Indicates pre-fixed point
Pre-computing adversary with . Pre-sampling adversary pre-fixing
S-bit advice, making T queries ST points making T queries

Proving impossibility of pre-sampling adversary is sufficient.
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Pre-Sampling Bound, then
Pre-Computation Bound

e Analyzing MD-based hash in the pre-sampling model with ST fixed points and
T queries to find unbounded collisions.

____________
e” S -

"""""" T ST
R/ N Or |
K pre-fixed
: points

This proves a bound of O (ST2/N) on finding unbounded collisions in MD
hashes with Pre-computation.
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Pre-Sampling is Length Insensitive

We give a 2-block collision finding attack with pre-sampling that has
advantage Q(ST?/N).

Pre-sampling Online Phase h

R4 =
hx “x’ al .Q. <
a.® <
l a ““‘ ) hx/

*
“
h / ‘.t
*
.
*

X

Thus, short collisions are as easy as long collisions for pre-sampling
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Pre-Sampling is Length Insensitive

We give a 2-block collision finding attack with pre-sampling that has
advantage Q(ST?/N).

Pre-sampling Online Phase h

R4 =
hx “x’ al .Q. <
a.® <
l a ““‘ ) hx/

hx , Ca\" ........ .
““ ...... hl. ) hx
i € [ST/2) el e N .
dst)
4 . h

Thus, short collisions are as easy as long collisions for pre-sampling
We prove short collisions are harder than

long collisions for pre-computation.
25



Compression Technique

[Dodis-Guo-Katz,17]

h out
>

e Shannon bound: E[ |out|] > entropy(h)
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Compression Technique

[Dodis-Guo-Katz,17]

out

e Shannon bound: E[ |out|] > entropy(h)
e Say adversary &/ wins on some salt a, making queries (¢, ..., gy) and getting
responses (1, ..., Fp). Then i, jsuch that r; = ;.

a , (@i))

Say & wins on ¢ fraction of salts. Then compressor repeats this on every winning salt.
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Compression Technique

[Dodis-Guo-Katz,17]

out

e Shannon bound: E[ |out|] > entropy(h)

e Say &/ wins on ¢ fraction of salts. Then compressor compresses h by at least
(eN - log(eN/T?) — S) bits on average.

e This contradicts the Shannon bound and gives € < (S + T?)/N.
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Extending Compression
Technique Is Not Trivial

e Say some 2-block collision finding adversary &/ wins on & fraction of
salts on h.

e Want to delete N entries in h with same output as a prior entry.

e For 2-block collisions there may not be €N such unique entries.

="
-
4 -
.’ -
-
-
-
-
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Extending Compression
Technique Is Not Trivial

e Say some 2-block collision finding adversary &/ wins on & fraction of
salts on h.

e Want to delete N entries in h with same output as a prior entry.

e For 2-block collisions there may not be €N such unique entries.

-
-="

4 -

.’ -
-
-

-

-

Finding collision for a salt is not independent of finding collision for other salts.
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Chernoff for Dependent Indicators

Traditional (one-sided) Chernoff Bound:

Let X, ..., Xy be i.i.d. 0/1 random variables and let X = 2 X..

IE[N]
Assume Pr[X. = 1] = 6. Then

Pr[X > 66N] < 2N
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Chernoff for Dependent Indicators

Traditional (one-sided) Chernoff Bound:

Let X4, ..., Xy be i.i.d. 0/1 random variables and let X = Z X,.

i€[N]
Assume Pr[X. = 1] = 6. Then

Pr[X > 66N] < 27V,

Limited-dependence, “bounded large moments” Chernoff:

Let X, ..., X,y be any 0/1 random variables and let X = 2 X..
i€[N]
Fix u, 6 and assume for all u-sized subsets U C [N] that p;; = Pr[IL.. /X, = 1] < 6"
Then
Pr[X > 60N] <27

e Allows X; to be correlated. Only requires bound on large moments of sum.
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Chernoff with Even More
Dependent Indicators

Limited-dependence, “bounded large moments” Chernoff:

Let X, ..., Xy be any 0/1 random variables and let X = 2 X..

IE[N]

Fix u, 0 and assume for all u-sized subsets U C [N] that p;; = Pr[IL,. X, = 1] < 6"

Then
Pr[X > 66N]| < 27%

[Impagliazzo-Kabanets'10]

34




Chernoff with Even More
Dependent Indicators

Limited-dependence, “bounded large moments” Chernoff:

Let X, ..., Xy be any 0/1 random variables and let X = 2 X..
i€[N]
Fix u, 6 and assume for all u-sized subsets U C [N] that p;; = Pr[IL.. /X, = 1] < 6"
Then
Pr[X > 66N] < 27%

e In our application, some p;; may be large, so does not apply. Instead we
use an easy-to-prove modification:
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Chernoff with Even More
Dependent Indicators

Limited-dependence, “bounded large moments” Chernoff:

Let X, ..., X,y be any 0/1 random variables and let X = 2 X..

i€[N]
Fix u, 0 and assume for all u-sized subsets U C [N] that p;; = Pr[IL,. X, = 1] < 6"
Then

Pr[X > 66N] < 27"

Our limited-dependence, “bounded average large moments” Chernoff:

Let X, ..., X,y be any 0/1 random variables and let X = Z X..

iE[N]
Fix u, 6. Assume that p;; = Pr[Il..,X; = 1] is at most 6“ when averaged over
U C |N]. Then

Pr[X > 66N] < 27"
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Impagliazzo’s Method

Step 1: Analyze adversary w/o advice on any fixed set U of salts:
Pr[Adversary succeeds on all salts in U] < 6
h
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Impagliazzo’s Method

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

Pr[Adversary succeeds on all salts in U] < 6
h

Step 2: Apply dependent Chernoff (X; indicates success on i-th salt):

Pr[Adversary succeeds on any 66N salts] <27
h
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Impagliazzo’s Method

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

Pr[Adversary succeeds on all salts in U] < 6
h

Step 2: Apply dependent Chernoff (X; indicates success on i-th salt):

Pr[Adversary succeeds on any 66N salts] <27
h

Step 3: Apply union bound over all 2° possible advice strings:

Pr[ Jadvice: Adversary succeeds on any 65N salts] < 2° . 27«
h

39



Impagliazzo’s Method

Step 1: Analyze adversary w/o advice on any fixed set U of salts:

Pr[Adversary succeeds on all salts in U] < 6
h

Step 2: Apply dependent Chernoff (X; indicates success on i-th salt):

Pr[Adversary succeeds on any 66N salts] <27
h

Step 3: Apply union bound over all 2° possible advice strings:

Pr[ Jadvice: Adversary succeeds on any 65N salts] < 2° . 27«
h

Conclude bound 68 + 2° - 27% on adversaries with advice.

Concretely: u = (S + log N), 6 = desired bound (e.g. O(ST/N)).
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Impagliazzo’s Method, Modified

Step 1: Analyze adversary w/o advice on a random set U of salts:

Pr [Adversary succeeds on all salts in U] < 6
h,U

Step 2: Apply dependent Chernoff (X; indicates success on i-th salt):

Pr[Adversary succeeds on any 66N salts] <27
h

Step 3: Apply union bound over all 2° possible advice strings:

Pr[ Jadvice: Adversary succeeds on any 65N salts] < 2° . 27«
h

Conclude bound 68 + 2° - 27% on adversaries with advice.

Concretely: u = (S + log N), 6 = desired bound (e.g. O(ST/N)).
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Step 1 via Compression

e Step 1: Analyze adversary w/o advice on a random set U of salts:

Pr [Adversary succeeds on all salts in U] < 6
h,U

[De-Trevisan-Tulsiani,10]

(h, U) out

>

e Shannon bound: E[ |out|] > entropy(h, U)
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Step 1 via Compression

e Step 1: Analyze adversary w/o advice on a random set U of salts:

Pr [Adversary succeeds on all salts in U] < 6*
h,U

(h, U) out

e Shannon bound: E[ |out|] > entropy(h, U)

e Plan:
1. Say some adversary & succeeds on (h, U) with large probability, say €.

2. Fix some (A, U) on which & wins.
3. We give a compressor that uses & to save log(1/6) bits for each salt in U.

4. This contradicts the Shannon bound and gives € < 0“.
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Bound on 2-block Collisions

Analyze adversary w/o advice on a random set U of salts and prove:

Pr [Adversary finds 2-block collisions on all salts in U] < (ST/N)*
h,U

(h,U) out

1. Fix (h, U) and consider an adversary that finds 2-block collisions on all salts in U.
2. Compress both & and U at a total of u spots. In each spot, compressor stores at
most O(log S + log T') bits to save log N bits.
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Bound on 2-block Collisions

Analyze adversary w/o advice on a random set U of salts and prove:

Pr [Adversary finds 2-block collisions on all salts in U] < (ST/N)*
h,U

(h,U) out

1. Fix (h, U) and consider an adversary that finds 2-block collisions on all salts in U.
2. Compress both & and U at a total of u spots. In each spot, compressor stores at
most O(log S + log T') bits to save log N bits.

This compressor is complicated (see paper).
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Types of 2-block Collisions

Q) > e,

Compressor needs to handle each of these types differently.
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Types of 2-block Collisions

0 S _ )

Compressor needs to handle each of these types differently.

Types of B-block collisions increase exponentially with B. Thus arbitrary B is hard.
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Definition of Zero-Walk Adversary

e \We define a restricted class of pre-computing adversary, referred as Zero-Walk adversary.

Pre-computation Online Phase
X
a .O. Store oa
Xi xz (aia xia xi/);'g:l hO .Cl2
da, QO- h o—»h ® .-
- ///]:,. _h L,
: 2 ho

a :
xS O——————————P @ criiecerianaens o

: (B-1)-length trails
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Best Known B-block
Collision Finding Adversary

Pre-computation ~ Online Phase
h,
hO hO hO 1
a “ hxi a
h a
h h h =2 hy 2
. 0 . 0 . 0 .O. ./h/_ho>
aé az h a /hzyO—} h
X : 0
. hT/B .- ho .............. ./
h, e
hy hy hy é_
> > _—> e |
ay ds ™5 (B-1)-length
XS
B/2 ’
times

S/3log N Achieves (STB/N) advantage

Output all (a;, X;, X))
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Are There Better
Zero-Walk Adversaries?

e Adversary could store collisions for salts with large B-depth trees
leading to them

e Advantage would be O(ST * (tree-size)/BN)

S S; =SS

(B-1)-depth | | (B-1)-depth

e We prove that the largest B-depth tree has size O(B?) with high

probability, so previous strategy is optimal.
o1



Size B-depth Trees
in Random Functional Graphs

Bounded B-depth trees of Random Functional Graphs:

For a random function £ : [N] — [N ] functions, the probability there exists a
B-depth tree in the graph for £ with €Q(B?) nodes is at most 1/N .

A naive approach would be using Chernoff and then
applying union bound over B depths but that gives
a loose bound of O(B?).

We obtain a tighter bound in the paper.
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Bound on Zero Walk Adversary

Bounded B-depth trees of Random Functional Graphs:

For a random function £ : [N] — [N ] functions, the probability there exists a
B-depth tree in the graph for £ with €Q(B?) nodes is at most 1/N .

The theorem implies the size of the largest
B-depth tree is O(B?) with probability at
least (1 — 1/N).
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Conclusions

e \We present new techniques that gives us the following
results:

Result 1: For any 2-block collision finding adversary, its
advantage is O(ST/N).

Result 2: For arbitrary B-block collision finding “zero
alk” adversary, its advantage is O(STB/N).

e Open problem: prove the conjectured O(STB/N) bound
on arbitrary B-block collision finding adversary’s
advantage, not just zero-walking adversary.
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Thank you.

https://eprint.iacr.org/2020/770.pdf
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