CRYPTO 2020

Order-Fairness
for
Byzantine Consensus

Mahimna Kelkar

Cornell University and Cornell Tech

I State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

|

Transactions
from clients

|

@ Byzantine

Consensus Nodes

/ Agree on a A

consistent
ordered

~ transaction log

I State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

/

S

Consistency or Safety
Honest nodes output the same log

\

)

/

Liveness

New TXs are incorporated soon

\

L
.

I State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

a

<

No restriction on the
actual ordering

N

« Often easy to manipulate

4

!

.
4

4
</

r
@ 3

* Almost all classical consensus protocols are leader-based
 E.g., PBFT, Paxos, Hotstuff etc.

* Leader node can propose any ordering
 Adversarial leader can arbitrarily manipulate ordering

* No previous protocol guarantees fair ordering.

Why is fair ordering important?

I Why is fair ordering important?

« 2014 exposé on high-frequency
trading on wall street.

~
\‘ #1 NEW YORK TIMES BEST-SELLING AUTHOR

»

N

N

o

e HFT characteristics

* Front-running

A WALL STREET REVOL ° Arbitrage

F L. A S H * Investigation and fines after Lewis'
B OY S book (FBI, SEC, etc.)

Why is fair ordering important?

« HFT back in a new Flash Boys 2.0:

form on Frontrunning, Transaction Reordering, and
decentralized Consensus Instability in Decentralized Exchanges
Philip Daian Steven Goldfeder Tyler Kell Yungi Li Xueyuan Zhao
eXC h a n g e S Cornfz)ll Tech tCornell Tech Coz'lnell Tech UI(c_llC yCl‘lMU
phil@cs.cornell.edu goldfeder@cornell.edu sk3259@cornell.edu yunqil3@illinois.edu xyzhao@cmu.edu
* Wild west without donns M e

ib327@cornell.edu lorenz.breidenbach @inf.ethz.ch juels@cornell.edu

much regulation
Daian et al. (IEEE S&P 2020)

Why is fair ordering important?

Independent Theoretical Motivation

 Natural Analog of Validity condition in Byzantine Agreement (BA)
* Validity forgotten when BA generalized to SMR

If all honest nodes are If all honest nodes are
input value v, |[:“> input my; before m,,
then all honest nodes will then all honest nodes will
agree on v. agree on m; before m,.

Agreement Validity Order-Fairness

Comparison to current techniques

° Censorship Resistance [HoneybadgerBFT, Omniledger etc]
e Reordering and insertion still possible

« Random leader election [Algorand, Ouroborous etc] Order-Fairness is
 Adversarial leader can still order unfairly StI’ICﬂy stronger than

previous notions

* Threshold Encryption [HoneybadgerBFT]
« Transactions ordered before content is revealed
 Can still reorder transactions from colluding client first
 Possible to blindly reorder

Detining Fair Ordering

Model

* Permissioned system with n nodes, f of which may be
adversarial

* Clients can collude with protocol nodes

Model

 External Network

« Communication between clients and protocol nodes
 Clients send transactions to all nodes

* Adversary A not in charge of message delivery

e Internal Network

« Communication amongst protocol nodes

« Adversary A handles all message delivery

12

I Model: Synchrony Definitions

A+ -External Synchrony

At -Internal Synchrony

If a transaction is input to some
node in round 7,
then all honest nodes will receive
\ it as input by round r + A,,;. y

If a message is sent by an honest
node in round 7,
then all recipient(s) will receive it
K by round r + A,;. y

13

I So how do we define the fair ordering?

Definition (informal): y-Receive-Order-Fairness % <y<1

L tom]

If yn nodes are input m; before m,,
then all honest nodes will deliver m; before m,.

< 4

14

I Condorcet Paradox

* Global ordering can be non-transitive even when
individual orderings are transitive

Alice Bob Carol
&
&l

[)

) R el
2 2 2
3. 3. 3.

é) j &)

15

I Condorcet Paradox

* Global ordering can be non-transitive even when

individual orderings are transitive
Alice Bob Carol

XKLy

re
—

1 (7 L))
2. (\v/ 2. 2. [[x\]
3. 3. 3.

sl By 3 AY)

16

I Condorcet Paradox

* Global ordering can be non-transitive even when

individual orderings are transitive
Alice Bob Carol

Fo XKy
adh ﬂ y <z
o)

2. \&/) 2. ([x\
. / 2

I Condorcet Paradox

* Global ordering can be non-transitive even when
individual orderings are transitive

Alice Bob Carol
Fo XKy
adh y<Kz
) Y)Y zZ KX
2. (v 2. (fz) 2. [Yx
3. [\z 3. [\ x} 3. [\y
\ _/ _ J \ _

I Condorcet Paradox

* Global ordering can be non-transitive even when
individual orderings are transitive

Alice Bob Carol
& XKy
alh y Kz
oY [Y zZ KX
2 (K2 2 U8 Cyclic Ordering!
3. 3. y
N "/ N "/

19

ﬁl‘ heorem (informal): Impossibility of Receive-Fairness h

Foranyn, f = 1 and y, no protocol can achieve all of
consistency, liveness and y-receive-order-fairness
then Ayt = 1.

/

20

I Block-Order-Fairness

a

{

Definition (informal): y-Block-Order-Fairness

If yn nodes are input m; before m,,
then all honest nodes will deliver m; no later than m,.

J

21

I Block-Order-Fairness

a

Definition (informal): y-Block-Order-Fairness

{

If yn nodes are input m; before m,,
then all honest nodes will deliver m; no later than m,.

J

« Key ldea: Deliver transactions with non-transitive ordering in
the same block

22

Why can’t we just order based on median timestamp?

 Asingle adversarial node can cause unfair ordering

A B C D E
tx; txq

tx, tx, tx4
tx;

Round
Number

tx; txq

oa ~ LW N -

23

Why can’t we just order based on median timestamp?

 Asingle adversarial node can cause unfair ordering

A B C D E .
1 txq txq 2 = med(tx,)
Nomber 2 txa U tx, -
3 m med(tx,)=3 y
4 txq txq
S tx; tx 2

Why can’t we just order based on median timestamp?

 Asingle adversarial node can cause unfair ordering

A B C D E .
txq txq 3 = med(tx,)

+*
tx, tx,
6 kmed(tx2)=2j

tx; txq
tx, tx, 25

Round
Number

oa ~ LW N -

Fair Ordering Protocols

I Aequitas: A Fair-Ordering Protocol

Inputs

‘—>[Gossip Stage
ope >

@ [Agreement Stage }

Output

[Finalization Stage} —)

The Gossip Stage

(1) Honest nodes broadcast transactions they to all nodes as
they are received

(2) Honest nodes store broadcasts received from other nodes

in local logs locallogij contains i's view of broadcasts by j

Guarantees that honest nodes have consistent local logs

The Gossip Stage

* FiFo (First-In-First-Out) Broadcast

* Messages broadcast by an honest sender are delivered in the
same order as they were broadcast

« Messages broadcast by an adversarial sender are delivered in a
consistent order by all honest nodes

* Can be realized from standard reliable broadcast [HDvR 07]

29

Agreement Stage

* Agree on which local logs to use to order a transaction

« Can be done using standard Byzantine agreement

Guarantees that honest nodes use the same local logs to finalize
a transaction

Finalization Stage

* The finalization stage orders the transaction in the final
output log

e |l eaderless

* No extra communication

Finalization Stage

Ordering two transactions

* lf many (e.g., yn — f) local logs contain tx' before tx, then tx
is said to wait for tx’

e Relations between transactions are viewed in a
dependency or waiting graph.

* Vertices represent transactions

« Edge (a,b) represents b waiting for a

|l eaderless Finalization

What if there is no clear winner in the two transactions?

Two problems to solve

1. Graph may not be complete or even connected.
« Some transactions may not be comparable

2. Graph may not be acyclic.

|l eaderless Finalization

Key Idea

* Wait for common descendant for @
(12

transactions without an edge in the graph @

* Order using maximum number of
dependents @

|l eaderless Finalization

* Graph can still have cycles

 To get a total ordering, compute the

condensation graph by collapsing the @

strongly-connected components

* Deliver transactions in the same component
into the same block.

* Synchronous protocol requires n > ——

*ji.,e.,n>2f evenwheny =1

* Asynchronous protocol requires n > ——

2
2y—1

_Af
2y—1

36

Some Caveats

* Only Achieves

* New transactions must be input sufficiently late in order to deliver
current transactions

« Conventional Liveness achieved when external network has small
synchrony bound

Some Caveats

 Adversary can unfairly order if it controls the entire Internet,
i.e. if it can also control a client’s connection to the
consensus protocol nodes

* In our modeling, this is handled by assuming adversary
does not control the external network

A general order-tairness compiler

* FiFo-broadcast and Byzantine Agreement are weak
primitives

* They can be realized from any consensus protocol

* General compiler that takes any consensus protocol and
transforms it into one that also provides order-fairness

Final Thoughts

* Our work is the first to formalize order-fairness and provide
protocols that realize it

* Order-Fairness is important for many blockchain
applications
« Decentralized exchanges (2.4 billion USD market)
* |CO token sales (12 billion USD market)

* Decentralized Finance in general

Thank you

mahimna @ cs.cornell.edu

1a.cr/2020/269

