

CRYPTO 2020

Order-Fairness for Byzantine Consensus

Mahimna Kelkar

Cornell University and Cornell Tech

Joint work with Fan Zhang, Steven Goldfeder, and Ari Juels

State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

Consistency or **Safety**

Honest nodes output the same log

State Machine Replication (SMR)

also Byzantine consensus, linearly-ordered log

• Often easy to manipulate

- Almost all classical consensus protocols are leader-based
 - E.g., PBFT, Paxos, Hotstuff etc.
- Leader node can propose any ordering
 - Adversarial leader can arbitrarily manipulate ordering

• No previous protocol guarantees fair ordering.

- 2014 exposé on *high-frequency* trading on wall street.
- HFT characteristics
 - Front-running
 - Arbitrage
- Investigation and fines after Lewis' book (FBI, SEC, etc.)

- HFT back in a new form on decentralized exchanges
- Wild west without much regulation

Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in Decentralized Exchanges

Philip Daian
Cornell TechSteven GoldfederTyler KellYunqi LiXueyuan ZhaoCornell TechCornell TechCornell TechUIUCCMUphil@cs.cornell.edugoldfeder@cornell.edusk3259@cornell.eduyunqil3@illinois.eduxyzhao@cmu.edu

Iddo Bentov Cornell Tech ib327@cornell.edu Lorenz Breidenbach ETH Zürich lorenz.breidenbach@inf.ethz.ch Ari Juels Cornell Tech juels@cornell.edu

Daian et al. (IEEE S&P 2020)

Independent Theoretical Motivation

- Natural Analog of **Validity** condition in Byzantine Agreement (BA)
- Validity **forgotten** when BA generalized to SMR

If all honest nodes are input value *v*, **then** all honest nodes will agree on *v*.

Agreement Validity

If all honest nodes are input m_1 before m_2 , then all honest nodes will agree on m_1 before m_2 .

Comparison to current techniques

- Censorship Resistance [HoneybadgerBFT, Omniledger etc]
 - Reordering and insertion still possible
- Random leader election [Algorand, Ouroborous etc]
 - Adversarial leader can still order unfairly
- Threshold Encryption [HoneybadgerBFT]
 - Transactions ordered before content is revealed
 - Can still reorder transactions from colluding client first
 - Possible to blindly reorder

Order-Fairness is strictly stronger than previous notions

Defining Fair Ordering

Model

Permissioned system with *n* nodes, *f* of which may be adversarial

• Clients **can** collude with protocol nodes

Model

External Network

- Communication between clients and protocol nodes
- Clients send transactions to **all** nodes
- Adversary ${\mathcal A}$ **not** in charge of message delivery

Internal Network

- Communication amongst protocol nodes
- Adversary $\mathcal A$ handles all message delivery

Model: Synchrony Definitions

 Δ_{ext} -External Synchrony

If a transaction is input to some node in round r, **then** all honest nodes will receive it as input by round $r + \Delta_{ext}$.

 Δ_{int} -Internal Synchrony

If a message is sent by an honest node in round r, **then** all recipient(s) will receive it by round $r + \Delta_{int}$.

So how do we define the **fair ordering**?

<u>Definition</u> (informal): γ -Receive-Order-Fairness $\frac{1}{2} < \gamma \leq 1$

If γn nodes are input m_1 before m_2 , **then** all honest nodes will deliver m_1 before m_2 .

• Global ordering can be **non-transitive** even when individual orderings are transitive

• Global ordering can be **non-transitive** even when individual orderings are transitive

Carol

Ζ

• Global ordering can be **non-transitive** even when individual orderings are transitive

1.

2.

3.

X

Carol

• Global ordering can be **non-transitive** even when individual orderings are transitive

1.

2.

3.

3.

 $z \ll x$

• Global ordering can be **non-transitive** even when individual orderings are transitive

 $x \ll y$

 $y \ll z$

 $z \ll x$

<u>Theorem</u> (informal): **Impossibility of Receive-Fairness**

For any $n, f \ge 1$ and γ , no protocol can achieve all of consistency, liveness and γ -receive-order-fairness when $\Delta_{ext} \ge n$.

Block-Order-Fairness

Definition (informal): γ-**Block**-Order-Fairness

If γn nodes are input m_1 before m_2 , then all honest nodes will deliver m_1 no later than m_2 .

Block-Order-Fairness

Definition (informal): γ-**Block**-Order-Fairness

If γn nodes are input m_1 before m_2 , then all honest nodes will deliver m_1 no later than m_2 .

• <u>Key Idea:</u> Deliver transactions with non-transitive ordering in the same block

Why can't we just order based on **median** timestamp?

• A single adversarial node can cause unfair ordering

		Α	В	С	D	E
Round Number	1	tx_1	tx ₁			
	2	tx_2	tx_2			tx ₁
	3					tx ₂
	4			tx ₁	tx ₁	
	5			tx ₂	tx ₂	

Why can't we just order based on **median** timestamp?

• A single adversarial node can cause unfair ordering

		Α	В	С	D	E
Round Number	1	tx ₁	tx_1			
	2	tx ₂	tx ₂			tx ₁
	3					tx ₂
	4			tx ₁	tx ₁	
	5			tx ₂	tx ₂	

Why can't we just order based on **median** timestamp?

• A single adversarial node can cause unfair ordering

		Α	В	С	D	E	
Round Number	1	tx ₁	tx ₁				3 = $med(tx_1)$
	2	tx ₂	tx ₂			tx ₂	≰ K i i i i i i i i i i i i i i i i i i i
	3					tx_1	$med(tx_2)=2$
	4			tx_1	tx ₁	\smile	
	5			tx ₂	tx ₂		25

Fair Ordering Protocols

Aequitas: A Fair-Ordering Protocol

The Gossip Stage

(1) Honest nodes broadcast transactions they to all nodes as they are received

(2) Honest nodes store broadcasts received from other nodes in *local logs locallog*^j contains i's view of broadcasts by j

Guarantees that honest nodes have **consistent** local logs

The Gossip Stage

FiFo (First-In-First-Out) Broadcast

- Messages broadcast by an honest sender are delivered in the same order as they were broadcast
- Messages broadcast by an adversarial sender are delivered in a consistent order by all honest nodes
- Can be realized from standard reliable broadcast [HDvR 07]

Agreement Stage

• Agree on which local logs to use to order a transaction

• Can be done using standard Byzantine agreement

Guarantees that honest nodes use the same local logs to *finalize* a transaction

Finalization Stage

• The finalization stage orders the transaction in the final output log

- Leaderless
 - No extra communication

Finalization Stage

Ordering two transactions

- If many (e.g., $\gamma n f$) local logs contain tx' before tx, then tx is said to **wait** for tx'
- Relations between transactions are viewed in a dependency or waiting graph.
 - Vertices represent transactions
 - Edge (*a*,*b*) represents *b* waiting for *a*

Leaderless Finalization

What if there is no clear winner in the two transactions? Two problems to solve

- 1. Graph may not be complete or even connected.
 - Some transactions may not be comparable
- 2. Graph may not be acyclic.

Leaderless Finalization

<u>Key Idea</u>

- Wait for common descendant for transactions without an edge in the graph
- Order using maximum number of dependents

Leaderless Finalization

- Graph can still have cycles
- To get a total ordering, compute the condensation graph by collapsing the strongly-connected components
- Deliver transactions in the same component into the **same block**.

• Synchronous protocol requires $n > \frac{2f}{2\gamma - 1}$

• i.e.,
$$n > 2f$$
 even when $\gamma = 1$

• Asynchronous protocol requires $n > \frac{4f}{2\gamma - 1}$

Some Caveats

- Only Achieves Weak-Liveness
 - New transactions must be input *sufficiently late* in order to deliver current transactions
 - Conventional Liveness achieved when external network has small synchrony bound

Some Caveats

Adversary can unfairly order if it controls the entire Internet,
i.e. if it can also control a client's connection to the
consensus protocol nodes

 In our modeling, this is handled by assuming adversary does not control the external network

A general order-fairness compiler

- FiFo-broadcast and Byzantine Agreement are weak primitives
 - They can be realized from any consensus protocol

• General compiler that takes **any** consensus protocol and transforms it into one that also provides order-fairness

Final Thoughts

- Our work is the first to formalize order-fairness and provide protocols that realize it
- Order-Fairness is important for many blockchain applications
 - Decentralized exchanges (2.4 billion USD market)
 - ICO token sales (12 billion USD market)
 - Decentralized Finance in general

Thank you

mahimna @ cs.cornell.edu

ia.cr/2020/269