
Mahimna Kelkar
Cornell University and Cornell Tech

CRYPTO 2020

Joint work with 
Fan Zhang, 
Steven Goldfeder, 
and Ari Juels

Order-Fairness 
for

Byzantine Consensus



State Machine Replication (SMR)
also Byzantine consensus, linearly-ordered log  

1

Transactions 
from clients

Agree on a 
consistent 
ordered 

transaction log

Consensus Nodes

Byzantine 



State Machine Replication (SMR)
also Byzantine consensus, linearly-ordered log  

Consistency or Safety
Honest nodes output the same log

Liveness
New TXs are incorporated soon

2



State Machine Replication (SMR)
also Byzantine consensus, linearly-ordered log  

Consistency or Safety
Honest nodes output the same log

Liveness
New TXs are incorporated soon

3

• No restriction on the 
actual ordering

• Often easy to manipulate



• Almost all classical consensus protocols are leader-based
• E.g., PBFT, Paxos, Hotstuff etc.

• Leader node can propose any ordering
• Adversarial leader can arbitrarily manipulate ordering

• No previous protocol guarantees fair ordering.

4



Why is fair ordering important?

5



Why is fair ordering important?

• 2014 exposé on high-frequency 
trading on wall street.

• HFT characteristics
• Front-running

• Arbitrage

• Investigation and fines after Lewis’ 
book (FBI, SEC, etc.)

6



Why is fair ordering important?

• HFT back in a new 
form on 
decentralized 
exchanges

• Wild west without 
much regulation

7

Daian et al. (IEEE S&P 2020)



Why is fair ordering important?

Independent Theoretical Motivation
• Natural Analog of Validity condition in Byzantine Agreement (BA)
• Validity forgotten when BA generalized to SMR

If all honest nodes are 
input value 𝑣,

then all honest nodes will 
agree on 𝑣. 

If all honest nodes are 
input 𝑚# before 𝑚$,

then all honest nodes will 
agree on 𝑚# before 𝑚$. 

Agreement Validity Order-Fairness
8



Comparison to current techniques

• Censorship Resistance [HoneybadgerBFT, Omniledger etc] 

• Reordering and insertion still possible

• Random leader election [Algorand, Ouroborous etc]

• Adversarial leader can still order unfairly

• Threshold Encryption [HoneybadgerBFT]

• Transactions ordered before content is revealed
• Can still reorder transactions from colluding client first
• Possible to blindly reorder

9

Order-Fairness is 
strictly stronger than 

previous notions 



Defining Fair Ordering

10



Model

• Permissioned system with 𝒏 nodes, 𝒇 of which may be 
adversarial

• Clients can collude with protocol nodes

11



Model

• External Network
• Communication between clients and protocol nodes

• Clients send transactions to all nodes

• Adversary 𝒜 not in charge of message delivery

• Internal Network
• Communication amongst protocol nodes

• Adversary 𝒜 handles all message delivery
12



Model: Synchrony Definitions

13

If a transaction is input to some 
node in round 𝑟,

then all honest nodes will receive 
it as input by round 𝑟 + Δ*+,. 

Δ*+, -External Synchrony

If a message is sent by an honest 
node in round 𝑟,

then all recipient(s) will receive it 
by round 𝑟 + Δ-.,. 

Δ-., -Internal Synchrony



So how do we define the fair ordering?

14

Definition (informal): 𝜸-Receive-Order-Fairness

If 𝛾𝑛 nodes are input 𝑚# before 𝑚$,
then all honest nodes will deliver 𝑚# before 𝑚$. 

1
2 < 𝛾 ≤ 1



Condorcet Paradox

15

• Global ordering can be non-transitive even when 
individual orderings are transitive

Alice Bob Carol

𝑥1.

2.

3.

𝑦

𝑧

𝑦1.

2.

3.

𝑧

𝑥

𝑧1.

2.

3.

𝑥

𝑦



Condorcet Paradox

16

• Global ordering can be non-transitive even when 
individual orderings are transitive

Alice Bob Carol

𝑥1.

2.

3.

𝑦

𝑧

𝑦1.

2.

3.

𝑧

𝑥

𝑧1.

2.

3.

𝑥

𝑦

𝒙 ≪ 𝒚



Condorcet Paradox

17

• Global ordering can be non-transitive even when 
individual orderings are transitive

Alice Bob Carol

𝑥1.

2.

3.

𝑦

𝑧

𝑦1.

2.

3.

𝑧

𝑥

𝑧1.

2.

3.

𝑥

𝑦

𝒙 ≪ 𝒚

𝒚 ≪ 𝒛



Condorcet Paradox

18

• Global ordering can be non-transitive even when 
individual orderings are transitive

Alice Bob Carol

𝑥1.

2.

3.

𝑦

𝑧

𝑦1.

2.

3.

𝑧

𝑥

𝑧1.

2.

3.

𝑥

𝑦

𝒙 ≪ 𝒚

𝒚 ≪ 𝒛

𝒛 ≪ 𝒙



Condorcet Paradox

19

• Global ordering can be non-transitive even when 
individual orderings are transitive

Alice Bob Carol

𝑥1.

2.

3.

𝑦

𝑧

𝑦1.

2.

3.

𝑧

𝑥

𝑧1.

2.

3.

𝑥

𝑦

𝒙 ≪ 𝒚

𝒚 ≪ 𝒛

𝒛 ≪ 𝒙

Cyclic Ordering!



20

Theorem (informal): Impossibility of Receive-Fairness

For any 𝑛, 𝑓 ≥ 1 and 𝛾, no protocol can achieve all of 
consistency, liveness and 𝛾-receive-order-fairness
when Δ*+, ≥ 𝑛.



Block-Order-Fairness

21

Definition (informal): 𝜸-Block-Order-Fairness

If 𝛾𝑛 nodes are input 𝑚# before 𝑚$,
then all honest nodes will deliver 𝑚# no later than 𝑚$. 



Block-Order-Fairness

22

Definition (informal): 𝜸-Block-Order-Fairness

If 𝛾𝑛 nodes are input 𝑚# before 𝑚$,
then all honest nodes will deliver 𝑚# no later than 𝑚$. 

• Key Idea: Deliver transactions with non-transitive ordering in 
the same block



Why can’t we just order based on median timestamp?

• A single adversarial node can cause unfair ordering

23

A B C D E
1 𝑡𝑥# 𝑡𝑥#
2 𝑡𝑥$ 𝑡𝑥$ 𝑡𝑥#
3 𝑡𝑥$
4 𝑡𝑥# 𝑡𝑥#
5 𝑡𝑥$ 𝑡𝑥$

Round 
Number



Why can’t we just order based on median timestamp?

• A single adversarial node can cause unfair ordering

24

A B C D E
1 𝑡𝑥# 𝑡𝑥#
2 𝑡𝑥$ 𝑡𝑥$ 𝑡𝑥#
3 𝑡𝑥$
4 𝑡𝑥# 𝑡𝑥#
5 𝑡𝑥$ 𝑡𝑥$

Round 
Number

2 = 𝒎𝒆𝒅 𝒕𝒙𝟏
≤

𝒎𝒆𝒅 𝒕𝒙𝟐 = 3



Why can’t we just order based on median timestamp?

• A single adversarial node can cause unfair ordering

25

A B C D E
1 𝑡𝑥# 𝑡𝑥#
2 𝑡𝑥$ 𝑡𝑥$ 𝑡𝑥$
3 𝑡𝑥#
4 𝑡𝑥# 𝑡𝑥#
5 𝑡𝑥$ 𝑡𝑥$

Round 
Number

3 = 𝒎𝒆𝒅 𝒕𝒙𝟏
≰

𝒎𝒆𝒅 𝒕𝒙𝟐 = 2



Fair Ordering Protocols

26



Aequitas: A Fair-Ordering Protocol

27

Gossip Stage

Agreement Stage

Finalization Stage

𝑡𝑥#

Inputs

Output 

𝑡𝑥%

𝑡𝑥$

𝐵&

𝐵#

⋮

𝐵'



The Gossip Stage

(1) Honest nodes broadcast transactions they to all nodes as 
they are received

(2) Honest nodes store broadcasts received from other nodes 

in local logs 𝑙𝑜𝑐𝑎𝑙𝑙𝑜𝑔-
I contains 𝑖’s view of broadcasts by 𝑗

28

Guarantees that honest nodes have consistent local logs 



The Gossip Stage

• FiFo (First-In-First-Out) Broadcast
• Messages broadcast by an honest sender are delivered in the 

same order as they were broadcast

• Messages broadcast by an adversarial sender are delivered in a 
consistent order by all honest nodes

• Can be realized from standard reliable broadcast [HDvR 07]

29



Agreement Stage

• Agree on which local logs to use to order a transaction

• Can be done using standard Byzantine agreement

30

Guarantees that honest nodes use the same local logs to finalize 
a transaction



Finalization Stage

• The finalization stage orders the transaction in the final 
output log

• Leaderless
• No extra communication

31



Finalization Stage

Ordering two transactions

• If many (e.g., 𝛾𝑛 − 𝑓) local logs contain 𝑡𝑥′ before 𝑡𝑥, then 𝑡𝑥
is said to wait for 𝑡𝑥′

• Relations between transactions are viewed in a 
dependency or waiting graph.

• Vertices represent transactions

• Edge (𝑎,𝑏) represents 𝑏 waiting for 𝑎

32



Leaderless Finalization

What if there is no clear winner in the two transactions?

Two problems to solve

1. Graph may not be complete or even connected. 
• Some transactions may not be comparable

2. Graph may not be acyclic.

33



Leaderless Finalization

Key Idea

• Wait for common descendant for 
transactions without an edge in the graph

• Order using maximum number of 
dependents

34

𝑡𝑥#

𝑡𝑥%

𝑡𝑥$

𝑡𝑥(

𝑡𝑥)



Leaderless Finalization

• Graph can still have cycles

• To get a total ordering, compute the 
condensation graph by collapsing the 
strongly-connected components

• Deliver transactions in the same component 
into the same block.

35

𝑡𝑥#

𝑡𝑥%

𝑡𝑥$

𝑡𝑥(

𝑡𝑥)



• Synchronous protocol requires 𝒏 > 𝟐𝒇
𝟐𝜸Q𝟏

• i.e., 𝑛 > 2𝑓 even when 𝛾 = 1

• Asynchronous protocol requires 𝒏 > 𝟒𝒇
𝟐𝜸Q𝟏

36



Some Caveats

• Only Achieves Weak-Liveness
• New transactions must be input sufficiently late in order to deliver 

current transactions

• Conventional Liveness achieved when external network has small 
synchrony bound

37



Some Caveats

• Adversary can unfairly order if it controls the entire Internet, 
i.e. if it can also control a client’s connection to the 
consensus protocol nodes

• In our modeling, this is handled by assuming adversary 
does not control the external network

38



A general order-fairness compiler

• FiFo-broadcast and Byzantine Agreement are weak 
primitives

• They can be realized from any consensus protocol

• General compiler that takes any consensus protocol and 
transforms it into one that also provides order-fairness

39



Final Thoughts

• Our work is the first to formalize order-fairness and provide 
protocols that realize it

• Order-Fairness is important for many blockchain 
applications
• Decentralized exchanges (2.4 billion USD market)

• ICO token sales (12 billion USD market)

• Decentralized Finance in general

40



Thank you

mahimna @ cs.cornell.edu

ia.cr/2020/269

41


