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Secret Sharing

m
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Access structure: t-out-of-n

Correctness: at least t parties are able to reconstruct the secret.

Privacy: less than t parties should not be able to learn any information about the secret.
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Rec m
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Leakage Resilient and Non-malleable Secret Sharing

m Share

Dealer

s1
s2
s3
s4

· · ·
sn

Parties

g ∈ G

Λ = g(s1, ..., sn)

s′1
s′2
s′3
s′4
· · ·
s′n

Rec m′

f ∈ F
T

Unauthorized

Authorized

Side channel attacks: partial information from all the shares may reveal some information about the message!

Tampering attacks: m′ may be related to m!

SECURITY BREACH!

!!

Leakage Resilient Secret Sharing [KMS18] : Λ reveals nothing about m for a restricted family G.
Non-Malleable Secret Sharing [GK18] : m′ is unrelated to m for a restricted family F .
Leakage-resilient non-malleability: the best of both worlds.
Limitations: Impossible for arbitrary families G and F .
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Our contributions

Our model

Joint leakage and tampering (selective partitioning, semi-adaptive partitioning).

Bounded leakage: the total leakage amounts to at most ` bits.

Selective partitioning

Any one-time statistically non-malleable secret sharing scheme is also leakage resilient.

Corollary: lower bounds for the size of the shares of non-malleable secret sharing schemes using [NS20].

Semi-adaptive partitioning

We construct a one-time non-malleable secret-sharing scheme against joint leakage and tampering under
semi-adaptive partitioning.

Both settings

Corollary: construction of a p-time non-malleable secret sharing scheme from known techniques [OPVV18, BFV19].

Statistical 1-NMSS Computational p-NMSS
compiler
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Security against selective partitioning

s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · sn

T = {1, 4, 5, 7, 8, 9, . . .}

s1 s5 s4 s7 s8 s9 · · · sn

g1 g2 . . .

Λ1 Λ2 . . .

f1 f2 . . .

s̃1 s̃5 s̃4 s̃7 s̃8 s̃9 · · · s̃n

m̃
Rec
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A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



A non-malleable secret sharing is also leakage resilient

Any one-time ε/2`-non-malleable secret sharing scheme is also a `-bounded leakage resilient one-time ε-non-malleable
secret sharing scheme.

Proof strategy: complexity leveraging.

m0 or m1?

T ,B = (B1, . . . ,Bt) T ,B = (B1, . . . ,Bt)

Leak, (g1, . . . , gt)

Randomly sample Λ1, . . . ,Λt
(Λ1, . . . ,Λt)

Tamper, (f1, . . . , ft)

m̃ or ⊥m̃ or ⊥

f̂i =

{
⊥ if leakage is wrong,

fi(sBi ) otherwise.

b b

Advantage > ε

Guess =⇒ perfect sim.
Leakage and tampering answers are correct

¬Guess =⇒ no advantage
The view of the adversary is independent of m0,m1

P [Guess] = 2−`

Advantage > 2−`ε

Q.E.D.

6 /11



Security against semi-adaptive partitioning

s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · sn

s1 s2 s3 s1 s2 s3 s1 s2 s3

Y Y YX X X

The attacker only tampers within partitions whose subsets do not partially overlap with subsets belonging to
leakage partitions.

Much easier to achieve.

7 /11



Security against semi-adaptive partitioning

s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · sn

s1 s2 s3 s1 s2 s3 s1 s2 s3

Y Y YX X X

The attacker only tampers within partitions whose subsets do not partially overlap with subsets belonging to
leakage partitions.

Much easier to achieve.

7 /11



Security against semi-adaptive partitioning

s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · sn

s1 s2 s3 s1 s2 s3 s1 s2 s3

Y Y YX X X

The attacker only tampers within partitions whose subsets do not partially overlap with subsets belonging to
leakage partitions.

Much easier to achieve.

7 /11



Our t-out-of-n semi-adaptive leakage-resilient non-malleable secret sharing

Construction inspired by [GK18]

m NMC

sL

sR

ShareL

ShareR

sL,1 sL,2 sL,3 . . . sL,n

sR,1 sR,2 sR,3 . . . sR,n

s1 s2 s3 . . . sn

Building blocks:

NMC: a 2-out-of-2 one-time non-malleable secret sharing scheme (i.e. a non malleable code);

ShareL: a joint-leakage resilient t-out-of-n secret sharing scheme;

ShareR: a joint-leakage resilient k′-out-of-n secret sharing scheme, where k′ ≈
√
t.

Security proof inspired by [KMS18]

We extend their result obtaining security against joint tampering with k′ − 1 shares (instead of independent
tampering).
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Our semi-adaptive leakage-resilient non-malleable secret sharing – Proof strategy
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Split the tampering set into two subsets T0 and T1 such that |T0| ≥ threshold of ShareR.

Hybrid 1: before tampering, replace the left shares within T1 with valid and consistent shares of the same secret.

Since we put the limitation of the semi-adaptive partitioning, the two subsets of shares T0 and T1 are unrelated each other even
conditioning on the leakage.
This is because of each subset of each leakage partition containing only shares that are within at most one subset of the
tampering partition.

Hybrid 2: replace all the left shares with shares of an unrelated value ŝL.

Hybrid 3-4: the same as in Hybrid 1-2, but on the right shares.

Now we can safely reduce to non-malleability of the non-malleable code.
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ŝL,2
sR,2
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ŝL,10
sR,10
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ŝL,5
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ŝL,6
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ŝR,8

s∗L,9
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ŝR,11

T0 T1

Split the tampering set into two subsets T0 and T1 such that |T0| ≥ threshold of ShareR.

Hybrid 1: before tampering, replace the left shares within T1 with valid and consistent shares of the same secret.
Since we put the limitation of the semi-adaptive partitioning, the two subsets of shares T0 and T1 are unrelated each other even
conditioning on the leakage.
This is because of each subset of each leakage partition containing only shares that are within at most one subset of the
tampering partition.

Hybrid 2: replace all the left shares with shares of an unrelated value ŝL.
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ŝL,2
s∗R,2
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ŝL,1
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Corollary: p-time non-malleability

Known techniques [OPVV18, BFV19], building blocks: Share, Com.

Algorithm Share∗(m):

Sample random coins r for Com.

Compute com← Com(m; r).

Share (s1, . . . , sn)← $Share(m||r).
Let, for all i ∈ [n], s∗i = (com, si).

Output (s∗1 , . . . , s
∗
n).

Algorithm Rec∗((s∗i )i∈I):

Parse each s∗i = (comi, si).

Check if all the com are all the same.

Reconstruct m||r ← Rec((si)i∈I).

Check that (m, r) is a valid opening for com.

If everything is OK, output m; otherwise, output ⊥.

Key ideas (very similar to [BFV19])

By induction over the number of queries.

Simulate tampering with leakage: obtain the mauled commitment and then extract the respective secret message.

Check if everything is correct with the last tampering query.

Commitment scheme =⇒ computational setting.

Bounded leakage =⇒ p-time non-malleability (instead of continuously).

Security against joint tampering.
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Conclusion and open problems

Our results

We prove that a non-malleable secret sharing scheme is also leakage resilient.

We give a construction of a leakage-resilient non-malleable secret sharing scheme against semi-adaptive
partitioning.

Corollary: lower bounds on the size of the shares of a non-malleable secret sharing scheme.

Corollary: construction of a p-time non-malleable secret sharing scheme.

Open problems / Work in Progress

Actually, we already have some preliminary work in progress...

Continuous non-mallebility against joint selective/(semi-)adaptive in the plain model.

Optimal rate, i.e. size of message
size of share .

Thank You!
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