Cryptanalysis of LEDAcrypt

Daniel Apon¹, *Ray Perlner*¹, Angela Robinson¹, Paolo Santini²

1: NIST

2: Università Politecnica delle Marche, Florida Atlantic University

Significance

- We present an attack on the QC-LDPC-McEliece construction of [Baldi et al. 2007]
- This construction was the basis of the second-round NIST PQC candidate, LEDAcrypt
- Prior to our attack this construction had a nearly 12-year history without a major break
- Our attack was a major factor in the non-selection of LEDAcrypt for the third round of the NIST PQC process
 - In response, the LEDAcrypt team published an updated spec which avoided the attack
 - NIST ultimately decided that this updated spec represented too large a tweak and made LEDAcrypt too similar to its competitor BIKE (BIKE is based on the QC-MDPC-McEliece scheme of [Misoczki et al. 2012])

LEDAcrypt Overview

- Conceptually very similar to QC-MDPC McEliece/Niederreiter
 - Private key is a sparse binary quasicyclic parity check matrix:

$$L = (L_0 \dots L_{n_0-1})$$

• Public key is a systematic form quasicyclic parity check matrix for the same code:

$$M = L_{n_0 - 1}^{-1} L$$

- Cyclic blocks are of dimension p and can be treated as polynomials in $F_2[x]/\langle x^p 1 \rangle$
- Recovering any row of L from M is sufficient to break the scheme
- Unique feature of unpatched LEDAcrypt:
 - Private key factors into two sparser matrices H and Q:

$$L = HQ = (H_0 \quad \dots \quad H_{n_0-1}) \begin{pmatrix} Q_{0,0} & \dots & Q_{0,n_0-1} \\ \vdots & \ddots & \vdots \\ Q_{n_0-1,0} & \dots & Q_{n_0-1,n_0-1} \end{pmatrix}$$

LEDAcrypt Parameters

- n_0 : Number of cyclic blocks in H, L, and M
- *p*: Dimension of cyclic blocks
- d_{v} : Row Hamming weight of each block of H
- $m = (m_0, m_1, \dots m_{n_0-1})$: Row weights of blocks of Q arranged like, e.g.:

m_0	m_1	m_2	m_3
m_3	m_0	m_1	m_2
m_2	m_3	m_0	m_1
$\backslash m_1$	m_2	m_3	m_0

• *t*: Errors corrected by *L*, in decrypt/decaps (irrelevant for our attack)

LEDAcrypt Parameters (2nd Round, CPA)

NIST Cat.	n_0	p	t	d_v	m	errors out of decodes
1	$2 \\ 3 \\ 4$		86	9	$\begin{matrix} [4,3] \\ [4,3,2] \\ [2,2,2,1] \end{matrix}$	$\begin{array}{c} 14 \text{ out of } 1.2 \cdot 10^9 \\ 0 \text{ out of } 1 \cdot 10^9 \\ 0 \text{ out of } 1 \cdot 10^9 \end{array}$
3	$2 \\ 3 \\ 4$	16,067	127	11	$\begin{matrix} [5,3] \\ [4,4,3] \\ [3,2,2,2] \end{matrix}$	2 out of $1 \cdot 10^9$ 0 out of $1 \cdot 10^9$ 0 out of $1 \cdot 10^9$
5	$2 \\ 3 \\ 4$	27,437	169	15	$\begin{matrix} [7,6] \\ [4,4,3] \\ [4,3,3,3] \end{matrix}$	$\begin{array}{l} 0 \text{ out of } 1 \cdot 10^9 \\ 0 \text{ out of } 1 \cdot 10^9 \\ 0 \text{ out of } 1 \cdot 10^9 \end{array}$

Summary of Attacks

- Weak key attack (All parameter sets)
 - A class of keys produced by LEDAcrypt's keygen with probability 2^{-x} , that can be recovered by an attack requiring the equivalent of 2^{y} AES operations
 - Considered an attack if x + y less than the security parameter λ
 - E.g.
 - For category 5 CPA parameters with $n_0 = 2$ (most effective relative to claimed security level), x = 47.72; y = 49.22; x + y = 96.94
 - For category 5 CCA parameters with $n_0=2$
 - x = 57.50; y = 52.54; x + y = 110.04
 - For category 1 CPA parameters with $n_0 = 4$ (least effective relative to claimed security level), we expect $x \approx 40$; $y \approx 50$

Summary of Attacks Cont.

- Average case attack (Asymptotic)
 - Can be considered an extension of the weak key attack with *x*<<1
 - Difficult to estimate concrete advantage over standard attacks
 - we suspect it is significant already for claimed category 5 parameters with $n_0 = 2$.

Key Recovery for MDPC Codes Information Set Decoding

- Basic idea: Guess p bits of low weight row of L
 - Note that the rows of L are in the row space of M
 - Linearly solve for the rest of the row
 - The *p* bits we guess are called the *"information set"*
- More detailed procedure:
 - Permute columns of M resulting in M' = MP = (A|B).
 - Hope first p bits of a row of LP are (1, 0, ..., 0).
 - If so, the row of *LP* is the top row of $A^{-1}M'$
 - More advanced ISD algorithms e.g. Stern, Leon, MMT, BJMM, MO... reduce complexity somewhat by trying multiple guesses for the first *p* bits of a row of *LP*
 - Asymptotic complexity where *LP* has row weight $w : \left(\frac{1}{p}\right) \left(\frac{n_0}{n_0-1}\right)^w$

Using LEDAcrypt's Product Structure Basic Idea

- Parameters of LEDAcrypt are set based on treating the code defined by M as an MDPC code and running the ISD attack on the previous slide
 - Attack complexity is essentially the inverse probability of guessing a randomly chosen p bits of a row of L
- Idea: Choose the bits to guess non-randomly

Using LEDAcrypt's Product Structure Choosing the Bits to Guess

- Want to find p bits of a row of L that are more likely than average to be (almost) entirely zero
- Equivalently: Want (almost) all the nonzero bits of the row of L to be in the remaining $(n_0-1)p$ bits
- Define those $(n_0-1)p$ bits as the support of a module in $(\mathbb{Z}[x]/\langle x^p-1\rangle)^{n_0}$ given by $(\sqrt{p})^{n_0} = 0$

$$L' = H'Q' = (H'_0 \quad \dots \quad H'_{n_0-1}) \begin{pmatrix} Q'_{0,0} & \dots & Q'_{0,n_0-1} \\ \vdots & \ddots & \vdots \\ Q'_{n_0-1,0} & \dots & Q'_{n_0-1,n_0-1} \end{pmatrix}$$

 If the supports of H' and Q' contain the supports of H and Q respectively, then all the nonzero bits of the support of L are contained in the support of L'

Contiguous Nonzero Coefficients

- The attack is not very good unless H' and Q' are chosen carefully
 - We want a significant fraction of the bits of H'Q' to be zero so we can guess that L has the same zero bits
 - But generally a product of two polynomials has quadratically more nonzero coefficients than the starting polynomials, which would make H' and Q' quite sparse
 - This would make it very unlikely that the supports of H and Q are contained in H' and Q' respectively
- In contrast, if two polynomials are chosen with large numbers of consecutive coefficients,
 - e.g. $1 + x + x^2 + \dots + x^{a-1}$ and $1 + x + x^2 + \dots + x^{b-1}$,
 - the product only has only a + b 1 nonzero coefficients
 - We will use polynomials like this in our attacks

Example: Weakest Keys (Category 5,
$$n_0 = 2$$
)

•
$$p = 36877; d_v = 11; m = (7, 6)$$

• Choose
$$H'_i = Q'_{j,k} = 1 + x + x^2 + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor}$$

- Probability that each nonzero bit of H_i , $Q_{j,k}$ is contained in support of H'_i , $Q'_{j,k}$ as appropriate is ~1/4.
- The total number of nonzero bits in these polynomials is $11 \cdot 2 + 7 \cdot 2 + 6 \cdot 2 = 48$
- So we might guess that a single iteration of ISD with this information set would recover 1 in $4^{48} = 2^{96}$ private keys
- But wait, there's more!

Equivalent Keys

- Many choices for the private key components, H and Q will produce the same public key $\overset{}{M}$
- In particular

$$H_0, H_1, Q_{0,0}, Q_{0,1}, Q_{1,0}, Q_{1,1}$$

And

$$x^{\alpha}H_{0}, x^{\beta}H_{1}, x^{\gamma-\alpha}Q_{0,0}, x^{\gamma-\alpha}Q_{0,1}, x^{\gamma-\beta}Q_{1,0}, x^{\gamma-\beta}Q_{1,1}$$

Are valid private keys with the same public key for any integers α , β , γ !

- If any equivalent private key has support within support H', Q', that key can be recovered
- Doesn't help as much as you might think, since small changes in α , β , γ don't usually change whether support of H', Q' contains support of H, Q
- Nonetheless, this consideration brings number of keys broken by single information set up to about 1 in 2⁸⁰
- But wait, there's more!

Equivalent Choices of H' and Q'

We generated our information set by taking

$$H'_i = Q'_{j,k} = 1 + x + x^2 + \cdots x^{\lfloor \frac{p}{4} \rfloor}$$

1 22 1

But we'd get the same information set by taking

$$H'_{0} = 1 + x + x^{2} + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor + a}$$
$$H'_{1} = 1 + x + x^{2} + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor + b}$$
$$Q'_{0,0} = Q'_{0,1} = 1 + x + x^{2} + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor - a}$$
$$Q'_{1,0} = Q'_{1,1} = 1 + x + x^{2} + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor - b}$$

- This consideration brings the number of keys broken by a single iteration of ISD up to 1 in $2^{72.8}$
- But wait, there's more!

Advanced Information Set Decoding

- ISD does not require that we only guess zeroes
 - In fact it requires that we don't
 - Advanced information set decoding algorithms e.g. Stern, MMT, BJMM, MO can tolerate up to about 6 nonzero bits in the information set without increasing the cost of an iteration
- Can be modeled by letting the support of *H*,*Q* be contained in higher-weight polynomials like:

$$H'_{i} = Q'_{j,k} = 1 + x + x^{2} + \cdots x^{\left\lfloor \frac{p}{4} \right\rfloor + \varepsilon}$$

• If so, we expect nonzero bits in H and Q to be distributed like this:

within support of L' = H'Q'

Advanced Information Set Decoding Cont.

• We expect nonzero bits in H and Q to be distributed like this:

within support of L' = H'Q'

- As long as no more than 6 nonzero bits are outside the middle $\frac{p}{2}$ bits of the support, we can recover the key
- This consideration brings the number of keys broken by a single iteration of ISD up to 1 in $2^{62.66}$

How Many Equally Good (and Independent) Information Sets?

- Our information set is defined by the support of L' = H'Q'
- We can graph the support we've been using as:

- Two things we can change:
 - The relative offset of the two blocks
 - The ring representation in which nonzero coefficients are consecutive

Changing the Offset

• Results in an L' that looks like:

- Note that shifting both blocks the same amount just gives an equivalent key
- Shifting by a small amount doesn't change much
- There are about $m_0 + m_1 + d_v = 24$ independent choices of offsets

Ring Representations

- There is a large family of Hamming weight preserving ring isomorphisms for $\mathbb{Z}[x]/\langle x^p 1 \rangle$ given by $f(x) \rightarrow f(x^k)$
- We can try polynomials which have consecutive nonzero coefficients in the image under one of these isomorphisms, and everything still works
- E.g. We can have ${H'}_i = {Q'}_{j,k} = 1 + x^k + x^{2k} + \cdots x^k \left[\frac{p}{4}\right]$
- Choices of k between 1 and $\frac{p-1}{2}$ result in mostly independent information sets
 - (k and -k result in equivalent information sets)

Rejection Sampling Considerations

- Our calculation above assumes any *H* and *Q* with the correct weights results in a valid key
- In fact, the key generation procedure for unpatched LEDAcrypt, rejects any *L* which is not full weight
 - We estimate 67.4% of the weakest keys are rejected
 - While only 39.2% of all keys are rejected
- This results in ~1 bit of security gained against our attack
- Thanks: Corbin McNeil for analyzing this consideration

Putting it All Together

- We have about $2^{18.72}$ (mostly) independent ways to recover about 1 in 2^{64} private keys for the cost of a single 36877 \times 36877 matrix inversion
 - These recover at least 1 in 2^{47.74} private keys total
 - Assume they cost about $2^{30.5}$ AES operations
- So for about $2^{30.5+18.72} = 2^{49.22}$ AES operations, we can recover 1 in $2^{47.74}$ keys

Considerations for $n_0 > 2$

- Naïvely applying the previous approach to cases where $n_0 > 2$ requires constraints on the support of $n_0 + n_0^2$ polynomials in the private key
- Attack works better when we only try to guess the support of 2 blocks of L at a time
- E.g. We can try to find low weight codewords in the row space of $\begin{pmatrix} M_0 & M_1 \end{pmatrix}$
- Then we only need to worry about 3 n_0 polynomials, i.e. H_i , $Q_{j,0}$, $Q_{k,1}$
- Net effect: Increasing n_0 still makes the attack less effective, but not as much as one might naïvely think

Less Weak Keys

- The previous example concerns only the weakest possible keys
- We can use more complicated information set patterns to mount a higher complexity attack on a larger class of somewhat-less-weak keys
 - Generally the support of each block H' may be divided into d'_v nonconsecutive stretches of consecutive coefficients
 - And the support of each block of Q^\prime may be divided into ${m'}_i$ nonconsecutive stretches of consecutive coefficients
 - We can use one ring representation for H'_i , and $Q'_{i,j}$ and a different ring representation for H'_k , and $Q'_{k,l}$
- For attack parameters around $d'_v = 6$; $m'_i = (5,5)$, we think we can recover nearly all of the keys for LEDAcrypt (CPA, Category 5, $n_0 = 2$) for something like 2^{248} classical AES operations
 - (Note: Not rigorous and not in paper; aiming for a slight overestimate)

Asymptotics

- For MDPC codes, the complexity of key recovery on a key of size k is exponential in $\tilde{O}(k^{1/2})$
- Assuming H and Q are similarly sparse, our attack runs in $\tilde{O}(k^{1/4})$
- That said, simply enumerating H and Q also runs in $\tilde{O}(k^{1/4})$
 - Considered in submission but concrete complexity was too high to affect parameters

Conclusion

- Our attack shows that LEDAcrypt's product structure is a security problem both asymptotically and concretely
- Attacks to find the weakest class of keys are close to practical for all parameter sets
- The fact that weak key attacks grade smoothly into more expensive attacks on successively larger classes of keys makes security analysis very difficult
 - Except when the product structure is trivial (i.e. *Q* is an identity matrix)