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Significance

• We present an attack on the QC-LDPC-McEliece construction of 
[Baldi et al. 2007]

• This construction was the basis of the second-round NIST PQC candidate, 
LEDAcrypt

• Prior to our attack this construction had a nearly 12-year history without a major 
break

• Our attack was a major factor in the non-selection of LEDAcrypt for the third 
round of the NIST PQC process

• In response, the LEDAcrypt team published an updated spec which avoided the attack
• NIST ultimately decided that this updated spec represented too large a tweak and made 

LEDAcrypt too similar to its competitor BIKE 
(BIKE is based on the QC-MDPC-McEliece scheme of [Misoczki et al. 2012])
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LEDAcrypt Overview

• Conceptually very similar to QC-MDPC McEliece/Niederreiter
• Private key is a sparse binary quasicyclic parity check matrix:

𝐿 =  𝐿଴ … 𝐿௡బିଵ

• Public key is a systematic form quasicyclic parity check matrix for the same code:
𝑀 = 𝐿௡బିଵ

ିଵ𝐿
• Cyclic blocks are of dimension 𝑝 and can be treated as polynomials in 

𝐹ଶ 𝑥 / 𝑥௣ − 1
• Recovering any row of 𝐿 from 𝑀 is sufficient to break the scheme

• Unique feature of unpatched LEDAcrypt:
• Private key factors into two sparser matrices 𝐻 and 𝑄:

𝐿 = 𝐻𝑄 = 𝐻଴ … 𝐻௡బିଵ

𝑄଴,଴ … 𝑄଴,௡బିଵ 

⋮ ⋱ ⋮
𝑄௡బିଵ,଴ … 𝑄௡బିଵ,௡బିଵ
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LEDAcrypt Parameters

• ଴: Number of cyclic blocks in , , and 
• :   Dimension of cyclic blocks
• ௩: Row Hamming weight of each block of 
• ଴ ଵ ௡బିଵ : Row weights of blocks of arranged like, 

e.g.:
଴ ଵ

ଷ ଴

ଶ ଷ

ଵ ଶ

ଶ ଷ

ଵ ଶ

଴ ଵ

ଷ ଴

• : Errors corrected by , in decrypt/decaps (irrelevant for our attack) 
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LEDAcrypt Parameters 
(2nd Round, CPA)
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Summary of Attacks

• Weak key attack (All parameter sets)
• A class of keys produced by LEDAcrypt’s keygen with probability ି௫, that can be 

recovered by an attack requiring the equivalent of ௬ AES operations
• Considered an attack if less than the security parameter 
• E.g. 

• For category 5 CPA parameters with 𝑛଴ = 2 (most effective relative to claimed security level),
𝑥 = 47.72; 𝑦 = 49.22; 𝑥 + 𝑦 = 96.94

• For category 5 CCA parameters with 𝑛଴ = 2

𝑥 = 57.50; 𝑦 = 52.54; 𝑥 + 𝑦 = 110.04

• For category 1 CPA parameters with 𝑛଴ = 4 (least effective relative to claimed security level), 
we expect 𝑥 ≈ 40; 𝑦 ≈ 50
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Summary of Attacks Cont.

• Average case attack (Asymptotic)
• Can be considered an extension of the weak key attack with <<1
• Difficult to estimate concrete advantage over standard attacks
• we suspect it is significant already for claimed category 5 parameters with 

଴ .
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Key Recovery for MDPC Codes
Information Set Decoding
• Basic idea: Guess bits of low weight row of 

• Note that the rows of are in the row space of 
• Linearly solve for the rest of the row
• The bits we guess are called the “information set”

• More detailed procedure:
• Permute columns of resulting in 

• Hope first 𝑝 bits of a row of 𝐿𝑃 are (1, 0, …, 0).
• If so, the row of 𝐿𝑃 is the top row of 𝐴ିଵ𝑀’
• More advanced ISD algorithms e.g. Stern, Leon, MMT, BJMM, MO… reduce complexity 

somewhat by trying multiple guesses for the first 𝑝 bits of a row of 𝐿𝑃

• Asymptotic complexity where 𝐿𝑃 has row weight 𝑤 : ଵ

௣

௡బ

௡బିଵ

௪
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Using LEDAcrypt’s Product Structure
Basic Idea

• Parameters of LEDAcrypt are set based on treating the code defined 
by as an MDPC code and running the ISD attack on the previous 
slide

• Attack complexity is essentially the inverse probability of guessing a randomly 
chosen bits of a row of 

• Idea: Choose the bits to guess non-randomly
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Using LEDAcrypt’s Product Structure
Choosing the Bits to Guess

• Want to find bits of a row of that are more likely than average to be (almost) 
entirely zero

• Equivalently: Want (almost) all the nonzero bits of the row of to be in the 
remaining ଴ bits

• Define those ଴ bits as the support of a module in
௣ ௡బ given by

଴ ௡బିଵ

଴,଴ ଴,௡బିଵ

௡బିଵ,଴ ௡బିଵ,௡బିଵ

• If the supports of and contain the supports of and respectively, then 
all the nonzero bits of the support of are contained in the support of 
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Contiguous Nonzero Coefficients

• The attack is not very good unless and are chosen carefully
• We want a significant fraction of the bits of to be zero so we can guess that 

has the same zero bits
• But generally a product of two polynomials has quadratically more nonzero 

coefficients than the starting polynomials, which would make and quite sparse
• This would make it very unlikely that the supports of H and Q are contained in and 

respectively
• In contrast, if two polynomials are chosen with large numbers of 

consecutive coefficients, 
• e.g. ଶ ௔ିଵ and  ଶ ௕ିଵ, 
• the product only has only nonzero coefficients
• We will use polynomials like this in our attacks
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Example: Weakest Keys
(Category 5, 

• ; ௩ ; 

• Choose ௜ ௝,௞
ଶ

೛

ర

• Probability that each nonzero bit of ௜, ௝,௞ is contained in support of ௜, 
௝,௞ as appropriate is ~1/4.

• The total number of nonzero bits in these polynomials is

• So we might guess that a single iteration of ISD with this information set 
would recover 1 in ସ଼ ଽ଺ private keys

• But wait, there’s more!
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Equivalent Keys

• Many choices for the private key components, and will produce the same public key 

• In particular
𝟎 𝟏 𝟎,𝟎 𝟎,𝟏 𝟏,𝟎 𝟏,𝟏

And
𝜶

𝟎
𝜷

𝟏
𝜸ି𝜶

𝟎,𝟎
𝜸ି𝜶

𝟎,𝟏
𝜸ି𝜷

𝟏,𝟎
𝜸ି𝜷

𝟏,𝟏

Are valid private keys with the same public key for any integers !
• If any equivalent private key has support within support 𝐻ᇱ, 𝑄′, that key can be recovered
• Doesn’t help as much as you might think, since small changes in 𝛼, 𝛽, 𝛾 don’t usually change 

whether support of 𝐻ᇱ, 𝑄′ contains support of 𝐻, 𝑄
• Nonetheless, this consideration brings number of keys broken by single information set up to 

about 1 in 2଼଴

• But wait, there’s more!
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Equivalent Choices of and 

• We generated our information set by taking 

௜ ௝,௞
ଶ

௣
ସ

• But we’d get the same information set by taking

଴
ଶ

௣
ସ

ା௔

ଵ
ଶ

௣
ସ

ା௕

଴,଴ ଴,ଵ
ଶ

௣
ସ

ି௔

ଵ,଴ ଵ,ଵ
ଶ

௣
ସ

ି௕

• This consideration brings the number of keys broken by a single iteration of ISD 
up to 1 in ଻ଶ.଼

• But wait, there’s more!
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Advanced Information Set Decoding

• ISD does not require that we only guess zeroes
• In fact it requires that we don’t
• Advanced information set decoding algorithms e.g. Stern, MMT, BJMM, MO can tolerate up to 

about 6 nonzero bits in the information set without increasing the cost of an iteration

• Can be modeled by letting the support of , be contained in higher-weight polynomials 
like:

௜ ௝,௞
ଶ

௣
ସ

ାఌ

• If so, we expect nonzero bits in and to be distributed like this:

within support of ᇱ

15



Advanced Information Set Decoding 
Cont.

• We expect nonzero bits in and to be distributed like this:

within support of ᇱ

• As long as no more than 6 nonzero bits are outside the middle ௣
ଶ

bits 
of the support, we can recover the key

• This consideration brings the number of keys broken by a single 
iteration of ISD up to 1 in ଺ଶ.଺଺
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How Many Equally Good 
(and Independent) 
Information Sets?
• Our information set is defined by the support of ᇱ ᇱ

• We can graph the support we’ve been using as:

• Two things we can change: 
• The relative offset of the two blocks
• The ring representation in which nonzero coefficients are consecutive

𝐿′଴ 𝐿′ଵ
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Changing the Offset

• Results in an ᇱ that looks like:

• Note that shifting both blocks the same amount just gives an 
equivalent key

• Shifting by a small amount doesn’t change much
• There are about ଴ ଵ ௩ independent choices of offsets

𝐿′଴ 𝐿′ଵ
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Ring Representations

• There is a large family of Hamming weight preserving ring isomorphisms 
for ௣ given by ௞

• We can try polynomials which have consecutive nonzero coefficients in the 
image under one of these isomorphisms, and everything still works

• E.g. We can have ௜ ௝,௞
௞ ଶ௞ ௞

೛

ర

• Choices of k between 1 and ௣ିଵ

ଶ
result in mostly independent information 

sets
• ( and result in equivalent information sets)
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Rejection Sampling Considerations

• Our calculation above assumes any and with the correct weights 
results in a valid key

• In fact, the key generation procedure for unpatched LEDAcrypt, 
rejects any which is not full weight

• We estimate 67.4% of the weakest keys are rejected
• While only 39.2% of all keys are rejected

• This results in ~1 bit of security gained against our attack

• Thanks: Corbin McNeil for analyzing this consideration
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Putting it All Together

• We have about ଵ଼.଻ଶ (mostly) independent ways to recover about 1 
in ଺ସ private keys for the cost of a single matrix 
inversion 

• These recover at least 1 in ସ଻.଻ସ private keys total
• Assume they cost about ଷ଴.ହ AES operations

• So for about ଷ଴.ହାଵ଼.଻ଶ ସଽ.ଶଶ AES operations, we can recover 1 in 
ସ଻.଻ସ keys
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Considerations for 

• Naïvely applying the previous approach to cases where ଴ requires 
constraints on the support of ଴ ଴

ଶ polynomials in the private key
• Attack works better when we only try to guess the support of 2 blocks of 

at a time
• E.g. We can try to find low weight codewords in the row space of

଴ ଵ

• Then we only need to worry about ଴ polynomials, i.e. ௜ ௝,଴ ௞,ଵ

• Net effect: Increasing ଴ still makes the attack less effective, but not as 
much as one might naïvely think
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Less Weak Keys

• The previous example concerns only the weakest possible keys
• We can use more complicated information set patterns to mount a higher 

complexity attack on a larger class of somewhat-less-weak keys
• Generally the support of each block 𝐻’ may be divided into 𝑑′௩ nonconsecutive stretches of 

consecutive coefficients
• And the support of each block of 𝑄’ may be divided into 𝑚′௜ nonconsecutive stretches of 

consecutive coefficients
• We can use one ring representation for 𝐻′௜, and 𝑄′௜,௝ and a different ring representation for 

𝐻′௞, and 𝑄′௞,௟

• For attack parameters around ௩ ௜ , we think we can recover 
nearly all of the keys for LEDAcrypt (CPA, Category 5, ଴ ) for something like 

ଶସ଼ classical AES operations
• (Note: Not rigorous and not in paper; aiming for a slight overestimate)
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Asymptotics

• For MDPC codes, the complexity of key recovery on a key of size is 
exponential in భ

మ⁄

• Assuming and are similarly sparse, our attack runs in భ
ర⁄

• That said, simply enumerating and also runs in భ
ర⁄

• Considered in submission but concrete complexity was too high to affect 
parameters
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Conclusion

• Our attack shows that LEDAcrypt’s product structure is a security 
problem both asymptotically and concretely

• Attacks to find the weakest class of keys are close to practical for all 
parameter sets

• The fact that weak key attacks grade smoothly into more expensive 
attacks on successively larger classes of keys makes security analysis 
very difficult

• Except when the product structure is trivial (i.e. is an identity matrix)
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