Cryptanalysis of LEDAcrypt

Daniel Apon?, Ray Periner!, Angela Robinson?, Paolo Santini?
1: NIST

2: Universita Politecnica delle Marche, Florida Atlantic University

Significance

* We present an attack on the QC-LDPC-McEliece construction of
[Baldi et al. 2007]

* This construction was the basis of the second-round NIST PQC candidate,
LEDAcrypt

. Eriorkto our attack this construction had a nearly 12-year history without a major
rea

e Our attack was a major factor in the non-selection of LEDAcrypt for the third
round of the NIST PQC process
* In response, the LEDAcrypt team published an updated spec which avoided the attack

* NIST ultimately decided that this updated spec represented too large a tweak and made
LEDAcrypt too similar to its competitor BIKE

(BIKE is based on the QC-MDPC-McEliece scheme of [Misoczki et al. 2012])

LEDAcrypt Overview

* Conceptually very similar to QC-MDPC McEliece/Niederreiter
* Private key is a sparse binary quasicyclic parity check matrix:

L= (Lo - Lpy-1)
* Public key is a systematic form quasicyclic parity check matrix for the same code:
M=Ly_, 'L

* Cyclic blocks are of dimension p and can be treated as polynomialsin
Fa[x]/{xP — 1)
* Recovering any row of L from M is sufficient to break the scheme

e Unique feature of unpatched LEDAcrypt:
* Private key factors into two sparser matrices H and Q:

Qo,o QO,nO—l
L=HQ=Hy .. Hp,—1) : " :
Qno—l,o Qno—l,no—l

LEDAcrypt Parameters

* ng: Number of cyclic blocks in H, L, and M

* p: Dimension of cyclic blocks

* d,,: Row Hamming weight of each block of H

*m = (my, My, ... My —1): Row weights of blocks of @ arranged like,

e.g..
my msg

ms My
ms My
ms My

e t: Errors corrected by L, in decrypt/decaps (irrelevant for our attack)

LEDAcrypt Parameters
(2nd Round, CPA)

NIST ng iz t d, m errors out of
Cat. decodes
2 (14,939 136 11 [4,3] 14 out of 1.2 - 10°
1 3|7,83 8 9 [4,3,2] Ooutofl-10°
47,547 69 13 [2,2,2,1] O0out of 1-10°
2 (25,693 199 13 [5,3] 2 out of 1-10°
3 316,067 127 11 [4,4,3] 0 out of 1-10°
4 (14,341 101 15 [3,2,2,2] O out of 1-10°
2 | 36,877 267 11 [7,6] 0 out of 1-10"
5 327,437 169 15 [4,4,3] 0 out of 1-10°
422,691 134 13 [4,3,3,3] 0 out of 1-10°

Summary of Attacks

* Weak key attack (All parameter sets)

* A class of keys produced by LEDAcrypt’s keygen with probability 27%, that can be
recovered by an attack requiring the equivalent of 2Y AES operations
* Considered an attack if x + y less than the security parameter 4
* E.g.
* For category 5 CPA parameters with ny = 2 (most effective relative to claimed security level),
x =47.72;y =49.22; x + y = 96.94
* For category 5 CCA parameters with ny = 2
x =57.50;y =5254;x +y =110.04

* For category 1 CPA parameters with ny = 4 (least effective relative to claimed security level),
we expect x = 40; y = 50

Summary of Attacks Cont.

* Average case attack (Asymptotic)
e Can be considered an extension of the weak key attack with x<<1
* Difficult to estimate concrete advantage over standard attacks

* we suspect it is significant already for claimed category 5 parameters with
no — 2

Key Recovery for MDPC Codes
Information Set Decoding

* Basic idea: Guess p bits of low weight row of L
* Note that the rows of L are in the row space of M
* Linearly solve for the rest of the row
* The p bits we guess are called the “information set”

* More detailed procedure:

* Permute columns of M resultingin M" = MP = (A|B).
* Hope first p bits of a row of LP are (1, 0, ..., 0).
* If so, the row of LP is the top row of A~ M’

* More advanced ISD algorithms e.g. Stern, Leon, MMT, BIMM, MO... reduce complexity
somewhat by trying multiple guesses for the first p bits of a row of LP

H . . 1 un w
* Asymptotic complexity where LP has row weight w : (;) ()

Tlo—l

Using LEDAcrypt’s Product Structure
Basic Idea

e Parameters of LEDAcrypt are set based on treating the code defined
by M as an MDPC code and running the ISD attack on the previous

slide

* Attack complexity is essentially the inverse probability of guessing a randomly
chosen p bits of a row of L

* |[dea: Choose the bits to guess non-randomly

Using LEDAcrypt’s Product Structure
Choosing the Bits to Guess

* Want to find p bits of a row of L that are more likely than average to be (almost)
entirely zero

e Equivalently: Want (almost) all the nonzero bits of the row of L to be in the
remaining (ng—1)p bits

* Define those (nyg—1)p bits as the support of a module in
(ZLx]/(xP — 1)) given by , ,
Qo0 v Qomg-1

L'=HQ =H, .. H’no_l)
Q’n0—1,o Q,no—l,no—l
* If the supports of H' and Q' contain the supports of H and Q respectively, then
all the nonzero bits of the support of L are contained in the support of L’

Contiguous Nonzero Coefficients

 The attack is not very good unless H and Q' are chosen carefully

« We want a significant fraction of the bits of H'Q’ to be zero so we can guess that L
has the same zero bits

. Butéenerally a product of two polynomials has quadratically maore nonzero
coefficients than the starting polynomials, which would make H" and Q" quite sparse

 This would make it very unlikely that the supports of H and Q are contained in H' and
Q' respectively
* |[n contrast, if two polynomials are chosen with large numbers of
consecutive coefficients,
cegl+x+x?+-+x%Tand 1 +x+x%+ - +xP71,
* the product only has only a + b — 1 nonzero coefficients
* We will use polynomials like this in our attacks

Example: Weakest Keys
(Category 5, ng = 2)
- p=36877;d, =11;m = (7, 6)

p
* Choose H'; =Q'j, =1+ x+x*+ ...xLJ

* Probability that each nonzero bit of H;, Q; i is contained in support of H';,

Q'; x as appropriate is ~1/4.

* The total number of nonzero bits in these polynomials is
11-24+7-2+6-2 =48

* So we might guess that a single iteration of ISD with this information set
would recover 1 in 4*® = 2% private keys

* But wait, there’s more!

Equivalent Keys

* Many choices for the private key components, H and Q will produce the same public key

* In particular
Hy, Hqy,Q00,Q0,1,Q10 Q11

And
x“Ho, xPH{, x""%Qg 0, xY Qo 1, XY Q10,7 #Q1,

Are valid private keys with the same public key for any integers a, 8, y!
* If any equivalent private key has support within support H', Q’, that key can be recovered

* Doesn’t help as much as you might think, since small changes in a, 5,y don’t usually change
whether support of H', Q" contains support of H, Q

* Nonetheless, this consideration brings number of keys broken by single information set up to
about 1 in 280

e But wait, there’s more!

Equivalent Choices of H and Q'

We generated our information set by taking
14
H;=Qjy=1+x+x*+ .. xld]
But we’d get the same information set by taking
Hy=1+x+x%+-
H; =1+x+x*+-
- xlz]-a
QOO—Q01—1+x+x + -
4
Q10=Q11=1+x+x+ lJb

This consideration brings the number of keys broken by a single iteration of ISD
uptolin 2728

But wait, there’s more!

Advanced Information Set Decoding

* |ISD does not require that we only guess zeroes
* |In fact it requires that we don’t

* Advanced information set decoding algorithms e.g. Stern, MMT, BJMM, MO can tolerate up to
about 6 nonzero bits in the information set without increasing the cost of an iteration

. I(':I?n be modeled by letting the support of H,Q be contained in higher-weight polynomials
ike:

p
H’i = Q’j,k =14+x+ x2 + ‘“Xl4]+8
* If so, we expect nonzero bits in H and Q to be distributed like this:

—

within support of L' = H’Q’

15

Advanced Information Set Decoding
Cont.

* We expect nonzero bits in H and Q to be distributed like this:

PESFEE

within support of L' = H’Q’

* As long as no more than 6 nonzero bits are outside the mlddle bits
of the support, we can recover the key

* This consideration brmgs the number of keys broken by a single
iteration of ISD up to 1 in 26266

16

How Many Equally Good
(and Independent)
Information Sets?

 Our information set is defined by the support of L’ = H' Q'

* We can graph the support we’ve been using as:
LIO L’1

E— E—

* Two things we can change:
* The relative offset of the two blocks
* The ring representation in which nonzero coefficients are consecutive

17

Changing the Offset

e Results in an L’ that looks like:

LIO L’1

E— E—

* Note that shifting both blocks the same amount just gives an
equivalent key

e Shifting by a small amount doesn’t change much
* There are about my + m; + d,, = 24 independent choices of offsets

18

Ring Representations

* There is a large family of Hamming weight preserving ring isomorphisms
for Z[x]/{x? — 1) given by f(x) = f(x")

* We can try polynomials which have consecutive nonzero coefficients in the
image under one of these isomorphisms, and everything still works

p
E.g.Wecanhave H'; = Q'j = 14+ x + x + "'.X'kLlJ

: -1 : : : :
e Choices of k between 1 and pT result in mostly independent information

sets
e (k and —k result in equivalent information sets)

Rejection Sampling Considerations

* Our calculation above assumes any H and Q with the correct weights
results in a valid key

* In fact, the key generation procedure for unpatched LEDAcrypt,
rejects any L which is not full weight
* We estimate 67.4% of the weakest keys are rejected
* While only 39.2% of all keys are rejected

* This results in ~1 bit of security gained against our attack

* Thanks: Corbin McNeil for analyzing this consideration

Putting it All Together

* We have about 21872 (mostly) independent ways to recover about 1
in 2°% private keys for the cost of a single 36877 X 36877 matrix
inversion

* These recover at least 1 in 24774 private keys total
* Assume they cost about 239> AES operations

e So for about 23021872 = 24922 AFG gperations, we can recover 1 in
247.74— keys

21

Considerations for ng > 2

* Naively applying the previous approach to cases where ny > 2 requires
constraints on the support of g + ny? polynomials in the private key

» Attack works better when we only try to guess the support of 2 blocks of L
at a time

* E.g. We can try to find low weight codewords in the row space of
(My M)

* Then we only need to worry about 3 ny polynomials, i.e. H;, Qj o, Qk 1

* Net effect: Increasing n, still makes the attack less effective, but not as
much as one might naively think

Less Weak Keys

* The previous example concerns only the weakest possible keys

* We can use more complicated information set patterns to mount a higher
complexity attack on a larger class of somewhat-less-weak keys

* Generally the support of each block H’” may be divided into d',, nonconsecutive stretches of
consecutive coefficients

» And the support of each block of Q" may be divided into m’; nonconsecutive stretches of
consecutive coefficients

* We can use one ring representation for H';, and Q’i,j and a different ring representation for
H,k, and Q’k,l
* For attack parameters around d’, = 6; m'; = (5,5), we think we can recover
nearly all of the keys for LEDAcrypt (CPA, Category 5, ny = 2) for something like

2248 classical AES operations
* (Note: Not rigorous and not in paper; aiming for a slight overestimate)

Asymptotics

* For MDPC codes, the complexity of key recovery on a key of size k is
exponential in O(kl/z)

* Assuming H and Q are similarly sparse, our attack runs in 5(k1/4)

* That said, simply enumerating H and Q also runs in 5(k1/4)

* Considered in submission but concrete complexity was too high to affect
parameters

Conclusion

e Our attack shows that LEDAcrypt’s product structure is a security
problem both asymptotically and concretely

 Attacks to find the weakest class of keys are close to practical for all
parameter sets

* The fact that weak key attacks grade smoothly into more expensive
attacks on successively larger classes of keys makes security analysis
very difficult

* Except when the product structure is trivial (i.e. Q is an identity matrix)

