A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem

Jean-Sébastien Coron and Agnese Gini

University of Luxembourg

CRYPTO2020

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 三 の Q () 2 / 18

Hidden Subset Sum Problem $h = \alpha_1 x_1 + \dots + \alpha_n x_n \pmod{Q}$ with $x_1, \dots, x_n \in \{0, 1\}$ and $\alpha_1, \dots, \alpha_n \in \mathbb{Z}/Q\mathbb{Z}^n$.

Given Q, h and $\alpha_1, \ldots, \alpha_n$, recover x_1, \ldots, x_n .

$$h_{1} = \alpha_{1}x_{1,1} + \dots + \alpha_{n}x_{n,1} \pmod{Q}$$

$$\vdots$$

$$h_{m} = \alpha_{1}x_{1,m} + \dots + \alpha_{n}x_{n,m} \pmod{Q}$$
with $x_{i,j} \in \{0,1\}$ and $\alpha_{1}, \dots, \alpha_{n} \in \mathbb{Z}/Q\mathbb{Z}^{n}$.
Given Q and h_{1}, \dots, h_{m} , recover $\alpha_{1}, \dots, \alpha_{n}$ and $x_{i,j}$ for $i \in [n]$ and $j \in [m]$.

The weights α_i 's are hidden!!

$$h_{1} = \alpha_{1}x_{1,1} + \dots + \alpha_{n}x_{n,1} \pmod{Q}$$

$$\vdots$$

$$h_{m} = \alpha_{1}x_{1,m} + \dots + \alpha_{n}x_{n,m} \pmod{Q}$$
with $x_{i,j} \in \{0,1\}$ and $\alpha_{1}, \dots, \alpha_{n} \in \mathbb{Z}/Q\mathbb{Z}^{n}$.

Given Q and h_1, \ldots, h_m , recover $\alpha_1, \ldots, \alpha_n$ and $x_{i,j}$ for $i \in [n]$ and $j \in [m]$.

 $\begin{bmatrix} h_1 & \cdots & \cdots & h_m \end{bmatrix} = \begin{bmatrix} \alpha_1 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} x_{1,1} & \cdots & \cdots & x_{1,m} \\ \vdots & \vdots & \vdots \\ x_{n,1} & \cdots & \cdots & x_{n,m} \end{bmatrix} \pmod{Q}$

Let Q be an integer, and let $\alpha_1, \ldots, \alpha_n$ be random integers in $\mathbb{Z}/Q\mathbb{Z}$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{Z}^m$ be random vectors with components in $\{0, 1\}$. Let $\mathbf{h} \in \mathbb{Z}^m$ satisfying:

$$\mathbf{h} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \pmod{Q}$$

Given Q and \mathbf{h} , recover the integers α_i 's and the vectors \mathbf{x}_i 's.

$$h = \alpha X \pmod{Q}$$

イロト イポト イヨト イヨト

3/18

Timeline

- 1998 Boyko, Peinado and Venkatesan presented a fast generator of random pairs $(x, g^x \pmod{p})$ introducing the HSSP.
- 1999 Nguyen and Stern described a lattice based algorithm for solving the HSSP.
- 2020 Our main contributions:
 - detailed analysis of the Nguyen-Stern algorithm,
 - variant working in polynomial-time.

Overview

・ロト ・四ト ・ヨト ・ヨト ・ヨ

5/18

- The Nguyen-Stern attack.
- Our polynomial-time attack.
- The affine hidden subset sum.
- Final remarks and open questions.

The Nguyen-Stern Attack

$$\mathbf{h} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \pmod{Q}$$

The idea:

• If a vector \mathbf{u} is orthogonal to \mathbf{h} modulo Q:

$$\langle \mathbf{u}, \mathbf{h} \rangle \equiv \alpha_1 \langle \mathbf{u}, \mathbf{x}_1 \rangle + \dots + \alpha_n \langle \mathbf{u}, \mathbf{x}_n \rangle \equiv 0 \pmod{Q}$$

 $\Rightarrow \mathbf{p}_{\mathbf{u}} = (\langle \mathbf{u}, \mathbf{x}_1 \rangle, \dots, \langle \mathbf{u}, \mathbf{x}_n \rangle) \text{ is orthogonal to } \boldsymbol{\alpha} \text{ modulo } Q.$

 If ||**p**_u|| < λ₁(Λ[⊥]_Q(α)), we must have **p**_u = 0, and therefore the vector **u** is orthogonal in Z to all vectors **x**_i.

The Nguyen-Stern Attack

The Nguyen-Stern Attack

The algorithm:

Step 1 From the samples **h** and Q, determine the lattice $\bar{\mathcal{L}}_{\mathbf{x}} = (\mathcal{L}_{\mathbf{x}}^{\perp})^{\perp}$, where $\mathcal{L}_{\mathbf{x}}$ is the lattice generated by the \mathbf{x}_i 's.

Step 2 From $\overline{\mathcal{L}}_{\mathbf{x}} \supseteq \mathcal{L}_{\mathbf{x}}$, recover the hidden vectors \mathbf{x}_i 's. From **h**, the \mathbf{x}_i 's and Q, recover the weights α_i 's.

$$C \longrightarrow X \longrightarrow \alpha$$

Our analysis:

Step 1:

- With probability at least 1/2 over the choice of α , the algorithm recovers a basis of $\overline{\mathcal{L}}_{\mathbf{x}}$ in polynomial time, assuming that Q is a prime integer of bitsize at least $2mn \log m$.
- For m = 2n, if the density is $d = n/\log Q = \mathcal{O}(1/(n\log n))$ we recover $\overline{\mathcal{L}}_{\mathbf{x}}$ in polynomial time.

8/18

• Heuristically, $d = \mathcal{O}(1/n)$ is sufficient.

Step 2:

- The \mathbf{x}_i 's are short vectors of $\bar{\mathcal{L}}_{\mathbf{x}}$.
- Using BKZ the asymptotic complexity is $2^{\Omega(n/\log n)}$.

Our polynomial-time algorithm

- We require $m \approx (n^2 + n)/2$ instead of m = 2n.
- Improved step 1: fast generation of orthogonal vectors.
- New step 2: recover binary vectors.

New step 2: multivariate approach

Ingredients:

• $\mathcal{L}_{\mathbf{x}}$ is a sublattice of $\overline{\mathcal{L}}_{\mathbf{x}}$: there exists $\mathbf{W} \in \mathbb{Z}^{n \times n} \cap \mathrm{GL}(\mathbb{Q}, n)$

$$\mathbf{X}$$
 = \mathbf{W} \mathbf{C}

• Being binary is an algebraic condition:

$$y \in \{0,1\} \Longleftrightarrow y^2 - y = 0$$

イロト イロト イヨト イヨト 三日

10/18

Mixing... $\mathbf{x}_i = \mathbf{w}_i \quad \mathbf{\tilde{c}}_1 \quad \cdots \quad \mathbf{\tilde{c}}_m$

For each $i = 1, \ldots, n$ and $j = 1, \ldots, m$ we have

•
$$x_{i,j} \in \{0, 1\}$$

• $\mathbf{w}_i \cdot \tilde{\mathbf{c}}_j = x_{i,j}$
 $\implies (\mathbf{w}_i \cdot \tilde{\mathbf{c}}_j)^2 - \mathbf{w}_i \cdot \tilde{\mathbf{c}}_j = 0$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

11/18

The rows of \mathbf{W} are solutions of multivariate quadratic polynomial system

$$\begin{cases} \mathbf{w} \cdot \tilde{\mathbf{c}}_{1} \tilde{\mathbf{c}}_{1}^{\mathsf{T}} \cdot \mathbf{w}^{\mathsf{T}} - \mathbf{w} \cdot \tilde{\mathbf{c}}_{1} = 0 \\ \vdots \\ \mathbf{w} \cdot \tilde{\mathbf{c}}_{m} \tilde{\mathbf{c}}_{m}^{\mathsf{T}} \cdot \mathbf{w}^{\mathsf{T}} - \mathbf{w} \cdot \tilde{\mathbf{c}}_{m} = 0 \end{cases}$$

• For $m \approx (n^2 + n)/2$ we expect to solve this system and recover the \mathbf{x}_i 's by $\mathcal{O}(n^6)$ bit operations and $\mathcal{O}(n^4)$ space complexity, via linear algebra.

The coefficient of $w_i w_k$ in the *j*th equation is $(2 - \delta_{i,k}) \mathbf{C}_{ij} \mathbf{C}_{kj}$.

- **E** is the matrix of the coefficients of the system.
- The rows of **W** are eigenvectors of certain submatrices of a basis of ker **E**.

Lemma

If **R** has rank $\frac{n^2+n}{2}$, then the vectors \mathbf{x}_i 's can be recovered in $\mathcal{O}(n^6)$ arithmetic operations.

Reducing the matrix relation $\mathbf{X} = \mathbf{WC} \mod p$ we can obtain a system defined over \mathbb{F}_p .

⇒ For $m \approx (n^2 + n)/2$ we expect to solve this system and recover the \mathbf{x}_i 's by $\mathcal{O}(n^6)$ bit operations and $\mathcal{O}(n^4)$ space complexity, via linear algebra.

Comparison

Experimental timing comparison

Affine Hidden Subset Sum Problem

 $\mathbf{h} + s\mathbf{e} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \pmod{Q}$

Given Q, **h** and **e**, recover the α_i 's and s and the vectors \mathbf{x}_i 's.

- Step 1 From (\mathbf{h}, \mathbf{e}) , determine the lattice $\overline{\mathcal{L}}_{\mathbf{x}}$, where $\mathcal{L}_{\mathbf{x}}$ is the lattice generated by the \mathbf{x}_i 's.
- Step 2 From $\mathcal{L}_{\mathbf{x}} \supseteq \mathcal{L}_{\mathbf{x}}$, recover the hidden vectors \mathbf{x}_i 's. From \mathbf{h} , the \mathbf{x}_i 's and Q, recover the weights α_i 's and s.

Conclusions

- We argue that the asymptotic complexity of the full Nguyen-Stern algorithm is $2^{\Omega(n/\log n)}$.
- We propose a new second step to recover short (binary) vectors using $m \simeq n^2/2$ samples, via a multivariate technique.
- Asymptotically the heuristic complexity of our full algorithm is $\mathcal{O}(n^9)$.

Can we further reduce m? and $\log Q$?

In addition, we show how to slightly reduce the number of samples m required for our attack, with two different methods; in both cases the attack remains heuristically polynomial time under the condition $m = n^2/2 - \mathcal{O}(n \log n)$.

Thank you for your attention!

Full paper at https://ia.cr/2020/461

Code at https://pastebin.com/ZFk1qjfP