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The discrete logarithm problem (DLP)

Asymmetric cryptography relies on the hardness of either
factorization (RSA) or the discrete logarithm problem.

—> Used in Diffie-Hellman, El-Gamal, (EC)DSA, etc

Definition
Given a finite cyclic group G, a generator g € G and a target
h € G, find x such that h = g*.

Commonly used groups: prime finite fields F, = (Z/pZ)", finite
fields ', elliptic curves over finite fields £(F)) ...

Groups G for which DLP is hard\
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Examples in the wild

Widely deployed protocols base their security on the hardness of
DLP on a group G.

Ephemeral Diffie Hellman

Technical Details l
Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

An interesting example: pairing-based protocols!

Fig from Diego Aranha
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Pairing-based cryptography

What is a cryptographic pairing 7
o G1,Gy: additive groups of prime order /.

e G1: multiplicative group of prime order £.

A pairingisamap e: Gy x G - Gt ‘

o with bilinearity: Va, b € Z, e(aP, bQ) = e(P, Q)?",
e non-degeneracy: 3P, Q such that e(P, Q) # 1,

e and such that e is efficiently computable (for practicality
reasons).

Called symmetric if G; = Go.
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Security of pairing-based protocols

Most of the time, in cryptography:
e Gy = subgroup of £(Fp),
e Gy = subgroup of E(Fpn),
* G1 = subgroup of finite field F,.

Why do we care 7 hundreds of old and many recent protocols built
with pairings.
Example: zk-SNARKS (blockchain, Zcash ...)

— Example that uses DLP on both elliptic curves and finite
fields.

Question: How to construct a secure pairing-based protocol ?
— Look at DLP algorithms on both sides!

5/29



The discrete logarithm problem on elliptic curves

K11
X Kt Xips+1 .
Xi-1 PR L e Best algorithm: Pollard Rho
X3 t"m—l e Complexity: square root of the size
\ X 4eqa/ of the subgroup considered.
X \fzﬂ—z Xiya .
2/ e Xpey e No gain except for constant factor
Xn{ Xrpa since the 70s.
'
Xo
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The discrete logarithm problem in finite fields

o

’

e Many different algorithms for DLP
in Fpn

e Their complexity depends on the
relation between characteristic p
and extension degree n.
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Useful notation

— Complexity depends on the relation between characteristics p
and extension degree n.

[-notation:

Lon(Ip, €) = exp((c + o(1)) (log(p"))* (loglog p") " +).

for 0 </, <1 and some constant ¢ > 0.

For complexities:
e When /, — 0: exp (loglog p") ~ log p" Polynomial-time
e When [, — 1: p" Exponential-time

In the middle, we talk about subexponential time.
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Three families of finite fields

Finite field: Fpn, with p = Lpn (Ip, ¢p)

Medium char

0
IFZ 1024 I]:pé‘so |Fp S50 IFP1024

e Different algorithms are used in the different zones.

e Algorithms don't have the same complexity in each zone.

Question: Which area do we focus on ?
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The first boundary case

In this work, we focus on the boundary case p = Lyn (1/3), the
area between the small and the medium characteristics.

ﬁ ')Medium char

N ’

0 | 2 1
Lpn <§7 CP) 3

Why?
1. Area where pairings take their values.

2. Many algorithms overlap: — which algorithm has the lowest
complexity 7
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Balancing complexities for the security of pairings

Idea: For pairings, we want DLP to be as hard on the elliptic curve
side than on the finite field side.

e choose the area where DLP in finite fields is the most difficult;
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Fig. Cécile Pierrot

e "“balance” complexity on elliptic curves and finite fields:

VP =Ly (1/3) = p =Ly (1/3)
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Main results of the paper

e Analyse the behaviour of
many algorithms in this area.

e Estimate the security of

pairing-based protocols.

{ 4,

1
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The index calculus algorithms

Consider a finite field Fn.
Factor basis: F = small set of " small " elements.
Three main steps:
1. Relation collection: find relations between the elements of F.

2. Linear algebra: solve a system of linear equations where the
unknowns are the discrete logarithms of the elements of F.

3. Individual logarithm: for a target element h € F,n, compute
the discrete logarithm of h.
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a—bx Z[X]
/ Q\A

X0

o0, Q0 /600) XX o
Ni(a — b0)) O1—m N,(a — b6,)
B-smooth? \} Fpr A B-smooth?
1. fi, f, irreducible in Z[X] s.t. the diagram commutes.
2. Compute the algebraic norms in Z: N(a — b6;)
3. Factor Nj(a — bf;) in Z into prime numbers
4. If prime factors < B on both sides — relation
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The Multiple NFS

Considering multiple number fields.

Z[X]

/ le\

Q) Q(Ov-1) Q(bv)

\\éyﬁ/

e fi,f as in NFS

e V — 2 other polynomials; linear combinations of fi, f,.
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The Tower NFS

R = Z[i]/h(¢), h monic irreducible of degree n (more algebraic
structure).

R[X]

T

Kr 2 RIX]/(i(X)) Kr O R[X]/((X))

af10—>m
ocf2i—>m

R/p:Fp"
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The Special NFS

The characteristic p is the evaluation of a polynomial P of degree
A with small coefficients: p = P(u) for u < p.
Example: BN family

o P(z) =36z* +362% + 24z + 6z + 1

o u=—(2242% +1)

e p = P(u) (254 bits)

P — 16798108731015832284940804142231733909889187121439069848933715426072753864723 .
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The complexity of NFS and its variants

e 3 phases = 3 costs — overall complexity is sum of 3 costs.

Goal: Optimize the maximum of these three costs.

Why complicated?

. Many parameters — discrete or continuous, boundary issues.
. Optimization problem — Lagrange multipliers.

. Solving a polynomial system — Grébner basis algorithm.

A W N =

. Uses many analytic number theory results.

18/29



A summary of these complexities

Complexity Complexity
34 1 e ER
: -, | NFS-JLSV1
2.8 1 , R 28]
X - —MNFS-JLSV2
A —MNFS-A
] 1 exTNFS-B
28 28 . —MexTNFS-B
s GNFS-3
- . . —SNF5-56
2.4 2.4 —SNFS-10
2.2 1 22
- NFSJLSVL
29 -NFSJLSV2 2
- NFS-A
1871 _ exTNFS-B 18 1
~MexTNF5-B
SNFS-2
16 4 16 4
- T - T - — Cp T - - - - - ~ &
05 1 15 2 25 3 0 5 10 15 20 25 30

Surprising fact:
e Not all the variants are applicable at the boundary case:
STNFS has a much higher complexity!
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The Function Field Sieve

R =Tp[].

F,[X, Y]
X<+gi(Y)
A@(X) \
Fp [X] Fp[Y]

X<—x
Y<+y
Fpo

e Function fields instead of number fields.

e Similar to the special variant.
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A shifted FFS

Our work: when n = k7, we lower the complexity of FFS.

Main idea: work in a shifted finite field (similar to Tower setup)
e Re-write: Fg = Fpn = Fpns = Fpm, where p’ = p*.
e From p=_Lg(1/3,¢cp), we get p’ = Lg (1/3, kcp).

Complexity in Fj» for ¢, = a < complexity in F,» at ¢, = ra.

Complexity Complezity
18 18
. FFS
17 17 shlft withk =
shlft with k =
16 16
15 \H’P 15
14 rr [-/\ ~ 14
13 13
12 12
- - - - - — Cp -
[ 0.1 0.2 03 0.4 0.5 0.4
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Quasi-polynomial algorithms

A lot of recent progress:

e 2013: complexity of Lpn(1/4 4 o(1)) (Joux)

e 2014: heuristic expected running time of 20((log log p")?)
(Barbulescu, Gaudry, Joux, Thomé)

e 2019: proven complexity! (Kleinjung and Wesolowski [KP19])

Theorem (Theorem 1.1 in [KP19)

Given any prime number p and any positive integer n, the discrete
logarithm problem in the group F :n can be solved in expected time
CQP — (pn)2log2(n)+0(1)
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And the winners are ... |

FFS variants of NFS
QP \/—/variants of NFS
small characteristic Lpa(1/3,¢p) medium characteristic

For the variants of NFS, the best algorithm depends on
considerations on n and p.

23/29



Constructing secure pairings

Asymptotically what finite field Fn should be considered in order
to achieve the highest level of security when constructing a
pairing?

Goal: find the optimal p and n that answers this question.
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Goal: Look for value of ¢, that maximizes min(comp,, compy ).

Complexity
34
2.5 . L= (8.77,2.19
5] : Th = (415,209 T*'ﬂ’lH"H
1.5 1 : ; ~ MNFS-A
14 ! — Pollard Rho with p=1
] ; : — Pollard Rho with p=2
0.5 § FFS
. el T T : T T T T Cp
2 4 6 8 10

e Complexities for finite field DLP are decreasing functions.

e Pollard rho is an increasing function (complexitys = p'/27)

— optimal ¢, given by the intersection point!
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When considering everyone!

Complezxity
34
2.5
5]
1.5 4
14 —MNFS-A
— Pollard Rho with p=1
— Pollard Rho with p=2
1 —MexTNF5-B
0.5 — SNFS-3
— SNF5-20
FFS
. . . Cp
2 4 6 8 10
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Conclusion for pairings

a secure
pairing?

You wanna build

'

normal p

special p
A=20

special p
A=3

n prime

Cp = 4.45, CMNFS-A = 2.23

Cp = 4.367 CSNFS-3 = 2.18

n composite

¢p = 3.91, cmexTNFs-B = 1.91

Suprising fact: Using a special form for p does not always make
the pairing less secure ! It depends on the value of .
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Thank you for your attention!

Questions?

28/29



The L-nOtation fOI’ FQ Wlth Q — pn Slide from Pierrick Gaudry

log = Lo(1/3
p=Lo(1/3)

p=Lo(2/3)

7
log log p
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