Faster Enumeration-based Lattice Reduction: Root Hermite Factor $k^{1/(2k)}$ in Time $k^{k/8+o(k)}$

Martin R. Albrecht¹, Shi Bai², Pierre-Alain Fouque³, Paul Kirchner³, Damien Stehlé⁴ and **Weiqiang Wen**³

¹ Royal Holloway, University of London ² Florida Atlantic University

³ Rennes Univ ⁴ ENS de Lyon

CRYPTO 2020

What is this work about?

Enumeration-based lattice reduction algorithms

- In case of input lattices of
 - large dimension: proved under a heuristic assumption;
 - **small** dimension: **simulation** still works for a variant algorithm.

Lattices

A definition of lattice

Given $\mathbf{B} = \{\mathbf{b}_1, \cdots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a set of linearly independent vectors, the lattice \mathcal{L} spanned by the \mathbf{b}_i 's is

$$\mathcal{L}(\mathbf{B}) = \left\{ \sum_{i \in [n]} u_i \mathbf{b}_i : \mathbf{u} \in \mathbb{Z}^n \right\}.$$

Lattices

A definition of lattice

Given $\mathbf{B} = \{\mathbf{b}_1, \cdots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a set of linearly independent vectors, the lattice \mathcal{L} spanned by the \mathbf{b}_i 's is

$$\mathcal{L}(\mathbf{B}) = \left\{ \sum_{i \in [n]} u_i \mathbf{b}_i : \mathbf{u} \in \mathbb{Z}^n \right\}.$$

Invariants in lattices

First minimum

$$\lambda_1(\mathcal{L}) = \min\{\|\boldsymbol{b}\|: \ \boldsymbol{b} \in \mathcal{L} \backslash \{\boldsymbol{0}\}\}.$$

Volume of lattice

 $\operatorname{Vol}(\mathcal{L}(\mathbf{B})) = \sqrt{\det(\mathbf{B}^{\mathrm{T}}\mathbf{B})}$ for any basis **B**.

Lattice problems

Shortest vector problem (SVP)

Given $\mathbf{B} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , it asks to find a vector \mathbf{s} in the lattice such that $\|\mathbf{s}\| = \lambda_1(\mathcal{L})$.

Lattice problems

SVP

Given $\mathbf{B} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , finds a vector \mathbf{s} in the lattice such that

$$\|\mathbf{s}\| = \lambda_1(\mathcal{L}).$$

γ -Hermite SVP (γ -HSVP)

Given $\mathbf{B} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , finds a non-zero vector \mathbf{s} in the lattice such that

$$\|\mathbf{s}\| \leq \frac{\gamma}{\gamma} \cdot \operatorname{Vol}(\mathcal{L})^{\frac{1}{n}}.$$

Lattice problems

Minkowski's theorem:
$$SVP \Rightarrow \sqrt{n} \text{-HSVP}$$
. $(\lambda_1 \leq \sqrt{n} \cdot \text{Vol}(\mathcal{L})^{1/n})$

SVP

Given **B** a basis of \mathcal{L} , finds a non-zero vector \mathbf{s} in \mathcal{L} such that

$$\|\mathbf{s}\| = \lambda_1(\mathcal{L}).$$

γ -Hermite SVP (γ -HSVP)

Given **B** a basis of \mathcal{L} , finds a non-zero vector \mathbf{s} in \mathcal{L} such that

$$\|\mathbf{s}\| \leq \gamma \cdot \operatorname{Vol}(\mathcal{L})^{\frac{1}{n}}$$
.

Best known solution: reduce the basis

Hermite factor

Given $\mathbf{B}=\{\mathbf{b}_1,\cdots,\mathbf{b}_n\}\subseteq\mathbb{Q}^m$ a basis of the lattice \mathcal{L} , its Hermite factor is

$$\mathsf{HF}(\boldsymbol{\mathsf{B}}) = \frac{\|\boldsymbol{b}_1\|}{\operatorname{Vol}(\mathcal{L})^{\frac{1}{n}}}.$$

Best known solution: reduce the basis

The BKZ lattice reduction is the most practical algorithm to achieve such task!

Hermite factor

Given $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , its Hermite factor is

$$\mathsf{HF}(\boldsymbol{\mathsf{B}}) = \frac{\|\boldsymbol{b}_1\|}{\operatorname{Vol}(\mathcal{L})^{\frac{1}{n}}}.$$

Introduce root Hermite factor to quantify lattice reduction

The BKZ lattice reduction is the most practical algorithm to achieve such task!

Hermite factor

Given $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , its Hermite factor is

$$\mathsf{HF}(\boldsymbol{\mathsf{B}}) = \frac{\|\boldsymbol{b}_1\|}{\operatorname{Vol}(\mathcal{L})^{\frac{1}{n}}}.$$

Root Hermite factor

Given $\mathbf{B} \subseteq \mathbb{Q}^m$ a basis of the lattice \mathcal{L} , its root Hermite factor is

$$RHF(\mathbf{B}) = HF(\mathbf{B})^{\frac{1}{n-1}}.$$

Gram-Schmidt orthogonalization

The BKZ lattice reduction is the most practical algorithm to achieve such task!

Gram-Schmidt orthogonalization

A matrix $\mathbf{B}^* = (\mathbf{b}_1^*, ..., \mathbf{b}_n^*)$ is the Gram-Schmidt orthogonalization of \mathbf{B} , if

$$\mathbf{b}_i^* = \mathbf{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{b}_j^*$$
, where $\mu_{i,j} = \frac{\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle}{\|\mathbf{b}_i^*\|^2}$.

Orthogonal projection

Notation of projection

Given a basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n) \in \mathbb{Q}^m$, we let $\mathbf{b}_i^{(j)}$ denote the orthogonal projection over $(\mathbf{b}_1, \cdots, \mathbf{b}_j)^{\perp}$ of \mathbf{b}_i .

Notation of projection

Given a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{Q}^m$, we let $\mathbf{b}_i^{(j)}$ denote the orthogonal projection over $(\mathbf{b}_1, \dots, \mathbf{b}_j)^{\perp}$ of \mathbf{b}_i .

Notation of projection

Given a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{Q}^m$, we let $\mathbf{b}_i^{(j)}$ denote the orthogonal projection over $(\mathbf{b}_1, \dots, \mathbf{b}_j)^{\perp}$ of \mathbf{b}_i .

$$\|\mathbf{b}_{2}^{*}\| = \|\mathbf{b}_{2}^{(1)}\| = \lambda_{1} \left(\mathcal{L}\left(\mathbf{b}_{2}^{(1)}, \mathbf{b}_{3}^{(1)}, \cdots, \mathbf{b}_{k+1}^{(1)}\right) \right)$$

Notation of projection

Given a basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n) \in \mathbb{Q}^m$, we let $\mathbf{b}_i^{(j)}$ denote the orthogonal projection over $(\mathbf{b}_1, \dots, \mathbf{b}_i)^{\perp}$ of \mathbf{b}_i .

The two practical SVP solver lamilles				
	Sieve [BDGL16]	Enumeration [Kan83; FP83; HS07; GNR10]		
Space Time	$\frac{\exp(k)}{2^{0.292k+o(k)}}$	$ \frac{\operatorname{poly}(k)}{k^{k/(2e)+o(k)}} (\approx k^{0.184k}) $		

The two practical SVP solver families				
	Sieve [BDGL16]	Enumeration [Kan83; FP83; HS07; GNR10]		
Space	$\exp(k)$	poly(<i>k</i>)		
Time	$2^{0.292k+o(k)}$	$k^{k/(2e)+o(k)} \ (\approx k^{0.184k})$		

The prior results and our result (informal)

Performance of enumeration-based (SD)BKZ and ours					
	(SD)BKZ [HPS11; MW16; Neu17]	This work (informally)			
RHF	$k^{1/(2k)}$	$k^{1/(2k)}$			
Time	$k^{k/(2e)+o(k)}$	$k^{k/8+o(k)}$			

Observation on BKZ and SDBKZ reduced bases

Study of $\delta_i = \ \mathbf{b}_i\ /\ \mathbf{b}_{i+1}\ $ for $i < n-k$					
BKZ	SDBKZ (in this work)				
[This work, Appendix]: δ_i is not fixed .	[MW16]*: fixed $\delta_i = \gamma^{2/(k-1)}$,				
(E.g., it does not give a line.)	given γ -HSVP on k -dim lattice.				

The SDBKZ reduced basis

- Enum_Cost('first block') = $k^{k/8+o(k)}$;
- ► Enum_Cost('last block') = $k^{k/(2e)+o(k)}$.

The SDBKZ reduced basis

- Enum_Cost('first block') = $k^{k/8+o(k)}$;
- ► Enum_Cost('last block') = $k^{k/(2e)+o(k)}$.

How can we do better than $k^{k/(2e)}$?

How can we do better than $k^{k/(2e)}$?

How can we do better than $k^{k/(2e)}$?

- Start from a smaller $k_0 = k \cdot 2e/8 (\approx 0.67k)$ as $k_0^{k_0/(2e)} \le k^{k/8}$.
- ▶ k_0 -dim SVP $\Rightarrow \sqrt{k_0}$ -HSVP \Rightarrow For k_0 -dim lattice, reach HF: $\sqrt{k_0}$ and RHF: $\sqrt{k_0}^{1/(k_0-1)} \approx k^{1/(1.36 \cdot k)}$.

Targeting RHF: $k^{1/(2k)}$ (k = 1000)

Starting block-size:

$$k_0 = k \cdot \frac{2e}{8} \approx 0.67k$$

 $\Rightarrow k_0^{k_0/2e} \approx k^{k/8}.$

Index i

$$\gamma_0$$
-HSVP
 $\gamma_0 = \sqrt{k_0}$

SDBKZ oracle

Targeting RHF: $k^{1/(2k)} (k = 1000)$

$$\gamma_0$$
-HSVP
 $\gamma_0 = \sqrt{k_0}$

SDBKZ oracle

Overall complexity bound: $k^{k/8+o(k)}$

Fast convergence

Fast convergence

The FastEnum algorithm

Algorithm 1 The FastEnum algorithm (γ_i -HSVP solver).

Require: A cost parameter k, a basis **B** of dimension k_i , and a level $i \ge 0$. **Ensure:** A solution of γ_i -HSVP on $\mathcal{L}(\mathbf{B})$.

- 1: **if** i = 0 **then**
- 2: **b** \leftarrow Enum(**B**); // worst-case cost: $k^{k/8}$ for size $k \cdot 2e/8$
- 3: **else**
- 4: **C** \leftarrow SDBKZ on **B** using γ_{i-1} -HSVP solver from last iteration;
- 5: $\mathbf{b} \leftarrow \operatorname{Enum}(\mathbf{C}_{[0:k_i-k_{i-1}]})$ with k_{i-1} from last iteration;
- 6: end if
- 7: return b;

Heuristic 1

During the SDBKZ execution, each call to γ -HSVP for a k-dimensional block $\mathbf{B}_{[i,i+k-1]}$ returns a vector of norm

$$\gamma \cdot \operatorname{Vol}(\mathcal{L}(\mathbf{B}_{[i,i+k-1]}))^{\frac{1}{k}}.$$

Main result

Theorem (Under Heuristic 1)

Given a basis ${\bf B}$ of a lattice and a parameter k, our new algorithm can reach root Hermite factor

$$k^{\frac{1}{2k}(1+o(1))}$$
 in time $k^{\frac{k}{8}+o(k)} \cdot \operatorname{poly}(\operatorname{size}(\mathbf{B}))$,

where the dimension of $\mathcal{L}(\mathbf{B})$ is $k \cdot \omega(1)$.

Heuristic 1

During the SDBKZ execution, each call to γ -HSVP for a k-dimensional block $\mathbf{B}_{[i,i+k-1]}$ returns a vector of norm around

$$\gamma \cdot \operatorname{Vol}(\mathcal{L}(\mathbf{B}_{[i,i+k-1]}))^{\frac{1}{k}}.$$

Practical case: *n* is relatively close to *k*

FastEnum: enumeration over 100%-line.

Make the enumeration zone cover the HKZ zone

▶ Enumeration over: c-line + (1-c)-HKZ curve for some $c \in [0, 1]$.

Determine concrete parameter c

Interpolated dominating constant u_0 on $k^{u_0 \cdot k + o(k)}$.

Handling the tailing blocks

Handling the tailing blocks

Decrease enumeration sizes for the tailing blocks.

Handling the tailing blocks

Decrease enumeration sizes for the tailing blocks.

Experimental results (n = 2k)

Conclusion

Performance of enumeration-based (SD)BKZ and ours		
	(SD)BKZ	This work (informally)
RHF	$k^{1/(2k)}$	$k^{1/(2k)}$
Time	$k^{k/(2e)+o(k)}$	$k^{k/8+o(k)}$
Quantum acceleration		
Time	$k^{k/(4e)+o(k)}$ [ANS18]	$k^{k/16+o(k)}$ [ANS18]+[This work]

- ▶ Large $n/k = \omega(1)$: heuristic analysis of our FastEnum algorithm.
- Small n/k = 2: **simulation** analysis of our practical variant.

[+] Remove the heuristic assumption; (e.g., follow the work of [HS07] + [HPS11; Neu17].)

- ► [+] Remove the heuristic assumption; (e.g., follow the work of [HS07] + [HPS11; Neu17].)
- ► [++] Extend to other lattice reduction algorithms; (e.g., BKZ reduction, slide reduction.)

- [+] Remove the heuristic assumption; (e.g., follow the work of [HS07] + [HPS11; Neu17].)
- ► [++] Extend to other lattice reduction algorithms; (e.g., BKZ reduction, slide reduction.)
- ► [++] Further investigation on cost below $k^{k/8}$. (e.g., the cost can be below $k^{k/8}$ for "free preprocessing".)

- ► [+] Remove the heuristic assumption; (e.g., follow the work of [HS07] + [HPS11; Neu17].)
- ► [++] Extend to other lattice reduction algorithms; (e.g., BKZ reduction, slide reduction.)
- ► [++] Further investigation on cost below $k^{k/8}$. (e.g., the cost can be below $k^{k/8}$ for "free preprocessing".)
- ► [+++] Study cryptographic relevance of this work; (e.g., give analysis for small *n/k*; concrete cross-over points with sieve-based algorithms classically and quantumly.)

References L

- [ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen, <u>Quantum lattice enumeration and tweaking discrete pruning</u>, AISACRYPT, 2018, pp. 405–434.
- [BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven, New directions in nearest neighbor searching with applications to lattice sieving, SODA, 2016, pp. 10–24.
 - [FP83] Ulrich Fincke and Michael Pohst, A procedure for determining algebraic integers of given norm, EUROCAL (J. A. van Hulzen, ed.), LNCS, vol. 162, Springer, 1983, pp. 194–202.
- [GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev, <u>Lattice enumeration using extreme pruning</u>, EUROCRYPT, 2010, pp. 257–278.
- [HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé, <u>Analyzing blockwise lattice algorithms</u> using dynamical systems, CRYPTO, 2011, pp. 447–464.
 - [HS07] Guillaume Hanrot and Damien Stehlé, <u>Improved analysis of kannan's shortest lattice vector algorithm</u>, CRYPTO, 2007, pp. 170–186.
- [Kan83] Ravi Kannan, Improved algorithms for integer programming and related lattice problems, STOC, 1983, pp. 193–206.
- [MW16] Daniele Micciancio and Michael Walter, <u>Practical, predictable lattice basis reduction,</u> EUROCRYPT, 2016, pp. 820–849.
- [Neu17] Arnold Neumaier, <u>Bounding basis reduction properties</u>, Des. Codes Cryptogr. **84** (2017), no. 1-2, 237–259.
- [SE94] Claus-Peter Schnorr and Michael Euchner, <u>Lattice basis reduction: Improved practical algorithms and solving subset sum problems</u>, Math. Program. 66 (1994), 181–199.