Tight PRF-Security of Double-block Hash-then-Sum MACs

Seongkwang Kim, **Byeonghak Lee**, Jooyoung Lee KAIST

Outline

- Introduction
 - Message Authentication Code
 - Double-block Hash-then-Sum paradigm
- Our Contribution
 - Tight security proof of DbHtS MACs
 - Refining Mirror theory
- Conclusion

2

Message Authentication Code (MAC)

- Symmetric key functions to guarantee message integrity
- Alice computes tag $T = MAC_K(M)$ and sends (M, T) to Bob
- Bob checks whether the tag is valid or not by computing $MAC_K(M)$

Message Authentication Code (MAC)

- Symmetric key functions to guarantee message integrity
- Alice computes tag $T = MAC_K(M)$ and sends (M, T) to Bob
- Bob checks whether the tag is valid or not by computing $MAC_K(M)$

MAC Security

- Unforgeability
 - Infeasible to generate a new valid message/tag pair
- PRF-Security
 - Infeasible to distinguish from a random variable-input-length (VIL) function
 - Secure variable-input-length PRF \Rightarrow Secure MAC (M,T) $T \stackrel{?}{=} MAC_{K}(M)$ (M',T') Bob

Distinguishing Game

- Adversary \mathcal{A} makes q queries to oracle (MAC_K or F)
- Each query has length at most *l* blocks
- Transcript $\tau = ((M_1, T_1), \dots, (M_q, T_q))$
- Adv(q, l) : Pr $[\mathcal{A}$ correctly determine the interacting world] $-\frac{1}{2}$

Why BBB-Security?

- Most popular MACs provides birthday-bound security
 - With *n*-bit block cipher, only $2^{n/2}$ security
- In lightweight cryptography, small blocks (64bits / 80bits) are preferred
 - birthday-bound security is insufficient

Construction	key bits	# of allowed queries
ECBC	64	2 ²⁵
PMAC	128	2 ¹⁸

Table*: Data limits of MACs using 64-bit blocks to ensure that the advantage is less than 2^{-10} where each message is shorter than 512KB

• Beyond-Birthday-Bound secure MACs needed!

BBB-Secure MACs

- Ideal cipher / tweakable block cipher based MACs
 - ZMAC[IMPS17], ZMAC+[LN17], HaT, HaK[CLS17]
 - Highly secure MACs from strong primitives

- Block cipher based MACs?
 - UHF-then-PRF* style MACs with n-bit internal state provides n/2-bit security
 - Idea: use 2n-bit state \Rightarrow Double-block Hash-then-Sum (DbHtS) paradigm [DDNP19]
 - SUM-ECBC, 3kf9, PMAC-Plus, LightMAC-Plus
 - Their security has been proved up to $O(2^{2n/3})$ queries

^{*}Universal Hash Function then Pseudorandom Function

Double-Block Hash-then-Sum

SUM-ECBC [Yasuda, CT-RSA 2010]

The first BBB-secure MACs

PMAC-Plus [Yasuda, CRYPTO 2011]

• Parallelizable, Rate-1 with BBB-security

9

Double-Block Hash-then-Sum

3kf9 [Zhang et al., ASIACRYPT 2012]

- 3GPP-MAC + ECBC
- Rate-1 without field operation

LightMAC-Plus [Naito, ASIACRYPT 2017]

• Message-length-independent security

Generic Attacks on DbHtS MACs

- Generic attacks with $O(2^{3n/4})$ queries [LNS18]
 - Exploited the difference between Xor of Permutations (XoP) and the ideal 2*n*-to-*n* bit function

 $E_{K_1}(F(M_1)) \oplus E_{K_2}(G(M_1)) = T_1$ $E_{K_1}(F(M_2)) \oplus E_{K_2}(G(M_2)) = T_2$ $E_{K_1}(F(M_3)) \oplus E_{K_2}(G(M_3)) = T_3$ $T_1 \oplus T_2 \oplus T_3 \oplus T_4 = 0$ $E_{K_1}(F(M_4)) \oplus E_{K_2}(G(M_4)) = T_4$

Gap exists between the best known attacks and their provable security!

11

Outline

- Introduction
 - Message Authentication Code
 - Double-block Hash-then-Sum paradigm
- Our Contribution
 - Tight security proof of DbHtS MACs
 - Refining Mirror theory
- Conclusion

Tight Security of DbHtS MACs

- Proved 3n/4-bit security of DbHtS MACs
 - Closed the gap between generic attacks and provable security bounds
 - Identify the required properties of the underlying hash functions

Construction	# Keys	Rate	Old Bound	New Bound	
PolyMAC	4	-	$l^2q^3/2^{2n}$	$l^3q^4/2^{3n}$	
SUM-ECBC	4	1/2	$l^2 q/2^n + q^3/2^{2n}$	$l^3q^4/2^{3n}$	
PMAC-Plus	3	1	$lq^{3}/2^{2n}$	$l^2 q^4 / 2^{3n} + l^2 q / 2^n$	
3kf9	3	1	$l^4q^3/2^{2n}$	$l^6q^4/2^{3n}$	
LightMAC-Plus	3	1-s/n	$q^3/2^{2n}$	$q^4/2^{3n}$	

Table: Security bound of DbHtS MACs. q denotes the number of queries, l denotes maximum block length, and s denotes the length of prefix for LightMAC-Plus

Comparison of Security Bounds for PMAC-Plus

Figure: Upper bounds on distinguishing advantage for PMAC and PMAC-Plus. x-axis gives the log of number of queries, and y-axis gives the security bounds.

14

- SPRP switch
 - Replace E_{K_1} and E_{K_2} by random permutations P and Q up to the to the pseudorandomness of E

• Transcript
$$\tau = \left((M_1, T_1), \dots, (M_q, T_q), K_h \right) \Rightarrow \tau = \left((U_1, V_1, T_1), \dots, (U_q, V_q, T_q) \right)$$

- T_{id} : Probability distribution of τ in the ideal world
- T_{re} : Probability distribution of τ in the real world

H-Coefficient Technique

H-coefficient lemma (informal)

If there exists ϵ_{bad} , ϵ_{ratio} such that 1) for a set of bad transcripts \mathcal{T}_{bad} , $\Pr[T_{id} \in \mathcal{T}_{bad}] \leq \epsilon_{bad}$ 2) with $\tau \notin \mathcal{T}_{bad}$, $\frac{\Pr[T_{re}=\tau]}{\Pr[T_{id}=\tau]} \geq 1 - \epsilon_{ratio}$ Then, $Adv \leq \epsilon_{bad} + \epsilon_{ratio}$

- Define a proper set of bad transcripts then upper bound ϵ_{bad} and ϵ_{ratio}
- $Pr[T_{id} = \tau]$ is easy to compute, while $Pr[T_{re} = \tau]$ is challenging

• Step 1: Represent the transcript by a graph

- Each query makes an affine equation between two variables
- Since we target BBB-security, hash collisions are allowed
 - \Rightarrow edges might be connected each other

- Step 2: Identify bad graphs
 - Some transcript graphs might lead to a contradiction!
 - When the graph contains a cycle
 - When the graph contains a path of even length whose tag sum is 0 (degeneracy)

• Step 3: Upper bound the probability of obtaining bad graphs (= ϵ_{bad})

Bad4 : $V_i = V_j \& U_j = U_k \& V_k = V_l \& \sum T = 0$ Bad5 : $U_i = U_j \& V_j = V_k \& U_k = U_l$

- Step 4: Apply Patarin's Mirror theory to upper bound ϵ_{ratio}
 - Mirror theory: evaluates the number of solutions of affine systems \Rightarrow evaluates $\Pr[T_{re} = \tau]$
- Mirror theory should be extended!
 - The original Mirror theory can be used when the maximum component size is bounded
 - This is not the case for DbHtS
 - We relaxed the constraints to allow a component of an arbitrary size
 - Instead, the ratio of the number of connected edges to the number of all the edges should be bounded

Refined Mirror Theory

• Patarin's Mirror theory

Authors	Publication	Application	Max Comp Size	Security
Patarin	eprint 2010/287	ХоР	2	n
Patarin	eprint 2010/293	Feistel	$2^n/q$	n
Mennink, Neves	Crypto 17	EWCDM	2	n
Datta, Dutta, Nandi, Yasuda	Crypto 18	DWCDM	3	2n/3
Dutta, Nandi, Talnikar	EC 19	CWC+	$2^n/q$	2n/3
Mennink	TCC 18	CLRW2	4	3n/4
Jha, Nandi	JoC 20	CLRW2	Any ¹⁾	3n/4
This work	EC 20	DbHtS	Any ²⁾	3n/4

 The first refinement allows a component of an arbitrary size up to 3n/4-bit security (concurrent work with [JN20])

Result

- Security of DbHtS MACs with two independent δ -universal hash functions F and G

$$\mathbf{Adv}_{\mathsf{DbHtS}[F,G]}(q) \le 4q^{\frac{4}{3}}\delta + \frac{22q^{\frac{4}{3}}}{2^n} + \epsilon(q,\delta)$$

• Security of PMAC-Plus

$$\mathbf{Adv}_{\mathsf{PMAC-Plus}}(q,\ell) \le \frac{53\ell^{\frac{2}{3}}q^{\frac{4}{3}}}{2^n} + \frac{\ell^2 q}{2^{n+1}} + \epsilon(q,\ell)$$

Conclusion

- Proved tight security bounds for DbHtS MACs
 - PolyMAC, SUM-ECBC, 3kf9, PMAC-Plus, LightMAC-Plus are PRF up to $2^{3n/4}$ queries
 - All the security bounds are tight in terms of the threshold number of queries
- Future Works
 - Find better security bounds considering the influence of message length ℓ
 - Find tight security of key-reduced variants of DbHtS MACs

Thank you

Q&A: lbh0307@kaist.ac.kr