Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs and Their Applications

Itai Dinur Ben-Gurion University, Israel

Eurocrypt 2020

The Birthday Problem

- Let [N] = {0,1,...,N-1}
- Given oracle access to random function f:[N]->[N]:
 Goal: output colliding pair: (x,y), x ≠ y such that f(x) = f(y)
- Can be done in time (queries) T such that T²≈N
- Tight (birthday bound)

Generalization of Birthday Problem

- Given access to random function f:[N]->[N], parameter C:
 Goal: output C district colliding pairs (x₁,y₁),...,(x_C,y_C)
- Variant 2: for random f₁,f₂: [N]->[N], parameter C:
 Goal: output C colliding pairs (x₁,y₁),...,(x_C,y_C) : f₁(x_i) = f₂(y_i)
 - Variants essentially equivalent
- Can be done in time T such that T²≈ C·N
- Tight (generalized birthday bound)

- Given random function f:[N]->[N], parameter C:
 Goal: output C district colliding pairs (x₁,y₁),...,(x_C,y_C)
- Can be done in time T such that T²≈ C·N (tight)
- What if **space** restricted to **S** bits?
- For S ≈ C, parallel collision search (PCS) [vOW96']) gives T²≈ C·N (optimal)
- What if S << C?

- For any S, PCS variant gives $T^2 \cdot S \approx C^2 \cdot N$
 - $S \approx C$ gives $T^2 \approx C \cdot N$
- E.g., for S≈1, C≈N : T ≈ N^{1.5}

(generalized birthday bound is $T \approx N$)

- "Memoryless" cycle finding algorithm (e.g., Floyd) finds collision in T ≈ N^{0.5}
- Repeat about N times (randomizing f) to obtain N collisions in T ≈ N^{1.5}
- Is tradeoff $T^2 \cdot S \approx C^2 \cdot N$ for collision search **optimal**?

- Is T²·S ≈ C²·N optimal?
- Motivation: breaking double-encryption
 - Assume p, c, $k_1, k_2 \in [N]$
 - Setting: given (p₁,c₁),(p₂,c₂),... find k₁,k₂

E₂

 C_1

- **Best attack**: MITM gives $T \approx N$, but requires $S \approx N$
- Assume $S \approx 1$:
 - define $f_1(k_1) = E_1(p_1, k_1), f_2(k_2) = (E_2)^{-1}(c_1, k_2)$
 - Find collisions f₁(k₁)=f₂(k₂)
 - Test each colliding candidate pair k₁,k₂ on (p₂,c₂),...
- Analysis: each candidate k_1, k_2 equally likely p_1 to be correct E_1
 - Need to find almost all ≈N collision
 - Collision pair search problem with C ≈ N >> S ≈ 1
 - PCS gives $T^2 \approx C^2 \cdot N \rightarrow \text{with } C = N$ gives $T \approx N^{1.5}$

- Is $T^2 \cdot S \approx C^2 \cdot N$ optimal?
- **Motivation**: if not optimal, can improve best-known time-space tradeoff for breaking **double-encryption**
- Additional applications: if not optimal, can improve best known time-space tradeoffs for various MITM-type attacks (in some parameter ranges):
 - Breaking triple (and multiple) encryption
 - Some **dedicated MITM attacks** on specific cryptosystems
 - Solving the **generalized birthday** problem
 - Solving the **subset-sum** problem
 - •

Our Results

- 1) Best-known time-space tradeoff T²·S ≈ C²·N for collision pair search problem is **optimal**
 - (for all parameters, in particular S << C)
- Conclusion: tradeoff algorithms for applications cannot be improved via more efficient collision search
- Can tradeoff algorithms for applications be improved by other means?
 - Unfortunately, **unconditional optimality proof** would overcome (variant of) **long-standing barrier** in complexity theory
- 2) For breaking double encryption, we show that under restriction, best-known tradeoff is optimal

1st Result: Time-Space Tradeoff Lower Bounds for Collision Pair Search

- Main idea for proving optimality of $T^2 \cdot S \approx C^2 \cdot N$ of tradeoff:
- Adapt **framework** of Borodin and Cook ('82)
 - Based on the **branching program** model of computation
 - Previously used to derive several time-space tradeoff lower bounds (e.g., on sorting, matrix multiplication, FFT...)
 - Adaptation to collision search: first use in cryptography

Lower Bounds for Collision Pair Search: Proof Intuition

- 1) Divide T into L time intervals (of length T'=T/L)
 - Say algorithm makes progress in interval if it outputs C'=C/L collisions in interval
 - Consider **"mini-problem"**: output **C'** collisions in time **T'**
 - Prove: any "mini-algorithm" succeeds with tiny probability ≤ ε (over choice of <u>f</u>) – independently of memory
- 2) To output C collisions, algorithm outputs C'=C/L collisions in some interval
 - Some "mini-algorithm" (defined from initial memory state of an interval) must output C' collisions
 - By **union bound** over all $\leq 2^{s}$ "mini-algorithms", main alg succeeds w.p $\leq 2^{s} \cdot \epsilon$ T'=T/L
 - Need ε<<2^{-S} to finish

10

Are Tradeoffs for Collision Search Applications optimal?

- Cannot use framework for proving optimality of collision search to prove optimality of applications
- In collision search: output length C is long
- In applications (e.g., breaking double encryption): output length is short
 - Not clear how to measure progress of algorithm towards solving problem
- Long standing barrier in complexity theory:
- Prove "meaningful" time-space tradeoff lower bound for short-output problem in general computational model
 - In restricted computational models (streaming, pebbling...),
 - ¹² strong lower bounds are known

2nd Result: Time-Space Tradeoff Lower Bounds for Breaking Double Encryption

- Best known (PCS-based) time-space tradeoff $T^2 \cdot S \approx N^3$
- Previous analysis: Tessaro and Thiruvengadam (TCC'18) showed problem is equivalent to well-known elementdistinctness (ED) problem
- Can we obtain **additional insight** into the problem?

Time-Space Tradeoff Lower Bounds for Breaking Double Encryption

р

E₁

E₂

С

 k_{2}

- Is best known (PCS-based) time-space tradeoff
 T²·S ≈ N³ optimal?
 Proving unconditional lower bound very
- Proving unconditional lower bound very unlikely
- Define new restricted computational model: post-filtering model

Post-Filtering Model

- Post-filtering model:
- Algorithm gets full access to a part of the input
- Access to remaining part restricted via a post-filtering oracle
 - Given 1st part of input, many **equally-likely** potential solutions exist
 - Algorithm forced to produce many potential outputs to be postfiltered by oracle
- Model forces reduction from short-output problem to related long-output problem

Post-Filtering Model for Breaking Double Encryption

- Recall: best known attack only uses (p₂,c₂),... for post-filtering (k₁,k₂) candidates
- $\begin{array}{c|c} p \\ k_1 & E_1 \\ k_2 & E_2 \\ \hline C \end{array}$
- In post-filtering model for double encryption algorithm gets:
 - 1) Access to block cipher
 - 2) (p₁,c₁)
 - 3) Access to post-filtering oracle $O(k_1, k_2)$: return 1 for correct key
 - Can **only** be invoked on k_1, k_2 that encrypt p_1 to c_1
- Captures PCS-based attack and various generalizations

Post-Filtering Model for Breaking Double Encryption

- Algorithm gets:
 - 1) Access to block cipher
 - 2) (p₁,c₁)
 - 3) Access to post-filtering oracle $O(k_1, k_2)$: return 1 for correct key
 - Can only be invoked on k₁,k₂ that encrypt p₁ to c₁
- We prove tradeoff T²·S ≈ N³ is optimal for any post-filtering attack on double encryption
 - Clean model abstracts away lower-level collision search problem
- Conclusion: to improve tradeoff, must non-trivially combine information form multiple (p_i,c_i)

$\begin{array}{c|c} p \\ k_1 & E_1 \\ k_2 & E_2 \\ k_2 & C \end{array} \right| \mathbf{x}$

Conclusions and Future Work

- Showed that best-known time-space tradeoff T²·S ≈ C²·N for collision pair search problem is **optimal**
- Presented the **post-filtering model** a new restricted computational model
- For breaking double encryption: proved tradeoff T²·S ≈ N³ optimal for any post-filtering attack
- Future work:
 - Extend **post-filtering** model to prove time-space lower bounds on additional problems
 - Alternatively, **bypass** the model and improve algorithms

Thanks for your attention!