
Implementing Grover Oracles for Quantum Key Search
on AES and LowMC

Samuel Jaques1, Michael Naehrig2, Martin Roetteler3, Fernando Virdia4

1Department of Materials, University of Oxford, UK
2Microsoft Research, Redmond, WA, USA
3Microsoft Quantum, Redmond, WA, USA

4Information Security Group, Royal Holloway, University of London, UK

Eurocrypt 2020
The interwebs



Preliminaries Quantum circuits for AES Parallelising key search Future directions

In 2016, NIST put out a call for post-quantum cryptography proposals [Nat16].

The call defines security categories that candidate schemes should belong to.

Categories 1, 3, and 5’s definitions are based on the hardness of key recovery
against AES-128, -192, -256, respectively.
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How hard is it to break AES with a quantum computer?

The only known strategy is “Groverising” exhaustive key search.

Grover’s search sketch
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Early termination of Grover’s search results in low success probabilities.
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What are the cost metrics for a quantum circuit? Some options:
D-cost: depth of the circuit

The depth is considered proportional to the time it requires to evaluate the circuit.

G-cost: number of gates and measurements
Idle qubits don’t have a cost.

DW -cost: depth-times-width of the circuit
Captures the need for error correction on the idle qubits.

One can then try to compare to the classical cost required to error-correct to the
cost of equivalent classical attacks [JS19, AGPS19].

In all three cases, different gates can be assigned different weights.
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For Grover’s search, Zalka [Zal99] showed that using S machines saves only
√

S
depth, optimally.

This non-trivial tradeoff means using more machines to cut attack duration may
result in larger costs.

To capture this, NIST suggest having an explicit MAXDEPTH ∈ {240, 264, 296}
parameter bounding quantum circuit depth.

MAXDEPTH is related to the total depth of the circuit, and not to the qubit’s
coherence times.
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They then infer the cost of using Grover’s against AES.
Say non-parallel Grover requires depth D = x · MAXDEPTH, for some x ≥ 1 and G
gates.

To cut depth by x , x2 machines are needed. Each uses ≈ G/x gates.

Total gate count: (G/x) · x2 = G · D/MAXDEPTH.

Attack gate counts

AES-128 2170/MAXDEPTH quantum gates
AES-192 2233/MAXDEPTH quantum gates
AES-256 2298/MAXDEPTH quantum gates

Table: Attack costs using D and G from Grassl et al. [GLRS16].
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Our initial idea: NIST cares about limiting depth, but uses [GLRS16] which
optimizes for width. What if we minimize depth?

Hindsight: parallelisation is bad, so crucially beneficial to minimise depth!

Let’s design parallel-friendly circuits, and implement them in Q#:
testable,

friendly to read/modify,

automated circuit size estimates,

easy to translate already existing AES components!
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Assumptions
We only work with logical qubits.

We do not assume any particular framework (e.g. the surface code).
Hence no costs for idle qubits or need for gates to operate locally.

But also no speedups like free CNOT fan-outs.

Swapping qubits is free, by “rewiring” (keeping track of the swaps).

This is not necessarily realistic, but is what the previous literature on AES (and hence
NIST in [Nat16]) uses.
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Let’s look at our design choices for a smaller Grover oracle for AES.

S-box: well investigated in the hardware literature.

Lots of linear programs to port to Q# and test.

Tried various variants of [BP11].

Scooped! In concurrent indepedent work, Langenberg et al. [LPS19] propose a
similar S-box change.

They provide an implementation of their S-box.
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Logic gates:

[GLRS16] use a 7 T-gates, T-depth 4 implementation of Toffoli gates.

We replace Toffoli’s with AND gates, using a custom design by Mathias Soeken,
based on Selinger [Sel13] and Jones [Jon13].
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It reduces T-depth to 1 and T-gates to 4, and has a “T-free” adjoint operator. It
does introduce measurements.



Preliminaries Quantum circuits for AES Parallelising key search Future directions

KeyExpansion:

[GLRS16] caches costly-to-compute bytes. Tricky to keep track of.

In-place round key expansion

Figure: AES 192 in-place i th round key expansion.

This saves us qubits with respect to full round-key precomputation, while not
increasing depth due to the computations running in parallel to the round.
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Other improvements:

We cost both [GLRS16]’s MixColumn design, and a recent, shallower (but wider)
design by Maximov [Max19].

Fix to the key uniqueness computation.
To uniquely identify a secret key, more than one message-ciphertext pairs are needed.

[GLRS16] overestimates how many are needed for a p ≈ 1 attack.

As Langenberg et al. [LPS19] also noticed, we suggest using 1, 2, 2 pairs for high
probability attacks (≈ 1/e, ≈ 1, ≈ 1/e) in the unbounded-depth setting.
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Grassl et al. [GLRS16]
scheme pairs width #Clifford #M #T T-depth full depth G-cost DW -cost psucc

AES-128 3 2 953 86 — 86 80 81 87 92 1
AES-192 4 4 449 119 — 118 112 113 120 125 1
AES-256 5 6 681 151 — 151 144 145 152 158 1

Langenberg et al. [LPS19]
AES-128 1 865 82 — 81 77 79 83 89 1/e
AES-192 2 1 793 115 — 114 109 111 116 122 1
AES-256 2 2 465 148 — 147 141 143 148 154 1/e

this work
AES-128 1 1665 82 77 79 70 75 82 85 1/e
AES-128 2 3329 83 78 80 70 75 83 86 1
AES-192 2 3969 115 110 112 102 107 115 119 1
AES-256 2 4609 147 142 144 134 139 147 151 1/e
AES-256 3 6913 148 143 145 134 139 148 152 1

︸ ︷︷ ︸
log2
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AES-128 in MAXDEPTH = 296 is the only attack fitting. For the others, we consider the
two strategies from Kim et al.e [KHJ18]:
Outer parallelisation

Run S independently, and stop early. Success probability S→∞−−−→ 0.915.

Inner parallelisation
The total search space has size N. Partition it into S disjoint subsets. Only one
subset contains the correct key.

Run S machines, each on a different subset of size N/S, and measure their output.

To reduce depth by
√

S, we run for π
4

√
N
S iterations. These are the right number

of iterations to find the key with p ≈ 1 in its subset of size N/S.

The correct key will be measured with p ≈ 1 in its subset. Classically check all S
outputs to win.
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Side effect:

For AES-128, we need 2 plaintext-ciphertext pairs to uniquely identify the secret
key K ∈ K = {0, 1}128.

Using 1 pair (m, c), the probability that only one key in K maps m 7→ c is 1/e.

Let’s partition K into S subsets. Say K ∈ KK . The probability that another
“spurious” key mapping m 7→ c exists in KK ⊂ K shrinks as S grows.

In practice, sometimes 1 plaintext-ciphertext pair in the quantum phase is enough.
=⇒ Less qubits are needed.



Preliminaries Quantum circuits for AES Parallelising key search Future directions

log2︷ ︸︸ ︷
scheme pairs MD D S W G-cost DW -cost
AES-128 1 40 40 69 80 117 120
AES-192 133 144 181 184
AES-256 197 209 245 249
AES-128 1 64 64 21 32 93 96
AES-192 85 96 157 160
AES-256 149 161 221 225
AES-128* 2 96 75 0 11 83 86
AES-192 96 21 33 126 129
AES-256 96 85 98 190 194
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Some observations:

Say a candidate scheme for category 5 does a similar analysis, and the best
quantum attack with MAXDEPTH = 240 has G-cost 2230.

Does it not meet the criteria? Nobody is going to build 2197 quantum computers
anyway, so Grover is not really an attack against AES-256 there.

Logical qubits won’t be free. Should we introduce MAXWIDTH? What would it
mean?

Maybe that we try to fit Grover within MAXWIDTH, compute the success probability
for the resulting attack, and then do the same for candidates (“Cat 5, MD 240, MW x
means no quantum attack with success prob ≥ 2−...”)?
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Finally, we can recompute NIST’s table, taking into account inner parallelisation
advantages.

NIST Security G-cost for MAXDEPTH

Strength Category source 240 264 296 approximation

1 AES-128
[Nat16] 2130 2106 274 2170/MAXDEPTH

this work 2117 293 ∗283 ≈ 2157/MAXDEPTH

3 AES-192
[Nat16] 2193 2169 2137 2233/MAXDEPTH

this work 2181 2157 2126 ≈ 2221/MAXDEPTH

5 AES-256
[Nat16] 2258 2234 2202 2298/MAXDEPTH

this work 2245 2221 2190 ≈ 2285/MAXDEPTH
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Another application: LowMC.

LowMC [ARS+15] is a block cipher family designed for FHE and MPC.

It is used as part of the Picnic [ZCD+17] submission.

We used the same tools and techniques used for AES to investigate its security.

key size AES G-cost LowMC G-cost

128 2157/MAXDEPTH 2163/MAXDEPTH

192 2221/MAXDEPTH 2231/MAXDEPTH

256 2285/MAXDEPTH 2297/MAXDEPTH
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Further research directions:

Improve the AES oracle with better S-boxes
Sacrificing simulatability, it would be possible to use a compiler based
on [GKMR14, ZC19] to automatically synthetise smaller circuits.

An orthogonal automatic technique could be to use the classical circuit minimizer
by [MSR+19, MSC+19] to attempt to further reduce the linear program components.

Improve the LowMC design by adopting the approach from [DKP+19].

Redo the analysis in the surface code setting (it would require new
implementations probably, maybe a specific surface-code compiler).
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Take some of the quantum algorithms proposed for the candidates (most use
Grover), and do a similar analysis of their quantum component. Do they
always/never/sometimes hit MAXDEPTH?

What happens if we introduce MAXWIDTH? Or some other bound?

How do the new oracles impact multi-target attacks? E.g. Banegas and
Bernstein [BB17].
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Thank you

See you at the panel discussion!

Paper @ https://ia.cr/2019/1146

Code @ https://github.com/microsoft/grover-blocks

https://ia.cr/2019/1146
https://github.com/microsoft/grover-blocks
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