On the Streaming Indistinguishability of a Random Permutation and a Random Function

Itai Dinur

Ben-Gurion University

Eurocrypt 2020

"Switching Lemma" for Random Permutation\Function

- Classical problem: adversary A tries to distinguish a random permutation P:[N]->[N] from random function F:[N]->[N] with Q queries
- "Switching Lemma": A has advantage bounded by O(Q²/N)
 - $|\Pr[A^{P(.)} = 1] \Pr[A^{F(.)} = 1]| \in O(Q^2/N)$
- Widely used to establish concrete security of cryptosystems up to **birthday bound** of $Q = \sqrt{N}$
 - E.g., modes of operation (counter-mode)

"Switching Lemma" for Random Permutation\Function

- "Switching Lemma": A has advantage bounded by O(Q²/N)
 - $|\Pr[A^{P(.)} = 1] \Pr[A^{F(.)} = 1]| \in O(Q^2/N)$
- Matching algorithm: store the Q query outputs and look for collision (F(q_i)= F(q_i) for q_i ≠q_i)

Memory-Restricted Adversaries

- Algorithm requires memory ≈Q bits
- What about memory-restricted adversaries?
- Use cycle detection algorithm to obtain optimal O(Q²/N)
 advantage with ≈log(N) memory
- Requires adaptive queries to primitive
- What if adversary with S memory bits only given stream of Q elements produced by random function\permutation?
- Considered by Jaeger and Tessaro at EUROCRYPT 2019
 [JT'19]

Streaming Switching Lemma [JT'19]

- "Streaming switching lemma" [JT'19]: adversary with S bits of memory with (1-pass) access to stream of Q elements from random permutation\function has distinguishing advantage of at most $\sqrt{Q \cdot S/N}$
- Application: better security bounds against memoryrestricted adversaries for some modes of operation

Streaming Switching Lemma [JT'19]

- Application: better security bounds against memoryrestricted adversaries for some modes of operation
- AES-based counter-mode:
- m_i encrypted to $(r_i, c_i = AES_K(r_i) \oplus m_i)$ for uniform r_i
- Eavesdropping adversary sees stream (r₁, c₁), (r₂, c₂),...
- Replace AES by random P + apply streaming switching lemma (several times):
- show $(r_1, c_1), (r_2, c_2),...$ Indistinguishable from
- $(r_i, \alpha_i), (r_i, \alpha_i),...$ for uniform α_i

Streaming Switching Lemma

- "Streaming switching lemma" [JT'19]: adversary with S bits of memory with access to stream of Q elements from random permutation\function has distinguishing advantage of at most $\sqrt{Q \cdot S/N}$
- Application: if S is limited, counter-mode secure beyond birthday bound
- Limitations of [JS'19]:
- 1) Proof based on unproven combinatorial conjecture
- 2) Bound $\sqrt{Q \cdot S/N}$ not tight when $Q \cdot S \ll N$
 - E.g., when S = Q, bound is $\sqrt{Q^2/N}$, but (original) switching lemma gives Q^2/N

New Streaming Switching Lemma

- In this work: overcome limitations
- New streaming switching lemma bound $O(\log Q \cdot Q \cdot S/N)$
- Tight (up to poly-log factors):
 - Algorithm: store first S elements and look for collision with Q elements
 - Advantage: $\approx Q \cdot S/N$
- Note: when S = Q, we get (original) switching lemma

CC → Streaming

- Main idea: reduce from communication complexity (CC) problem (with strong lower bounds) to streaming
- General reduction framework from one-way CC problem:
 - Alice, Bob solve CC problem given access to streaming algorithm:
 - View concatenated inputs as stream
 - Alice simulates streaming algorithm on her input, passes state to Bob which continues simulation, outputs result

CC → Streaming

- Streaming algorithm with memory S gives one-way communication protocol with communication cost S (and same advantage)
- Lower bound on cost of communication protocol → lower bound on memory of streaming algorithm

Reduction Attempt for Random Permutation\Function

- Attempt: CC problem each player gets Q/2 elements, chosen using rand permutation\function
- Useless: CC problem is easy
 - E.g., if $Q > \sqrt{N}$, players can **trivially distinguish** between permutation\function with **no communication**
 - Each player has unlimited resources and can detect a collision locally

Alice Bob
$$X_1,...,X_{\mathbb{Q}/2}$$
 $X_{\mathbb{Q}/2+1},...,X_{\mathbb{Q}}$

Reduction Attempt for Random Permutation\Function

- General restriction: in hard CC problem joint distributions for Alice and Bob's inputs should have identical marginals
 - Alice and Bob should have same local view
- Impossible when considering rand permutation\function distributions
- Solution: use hybrid argument
 - Consider intermediate hybrid distributions between random permutation and random function
 - Prove indistinguishability of neighboring hybrid distributions by reduction from CC

Hybrid Argument

- Attempt: define Q hybrids games
 - Game i: $x_1, \dots x_{Q-i}, x_{Q-i+1}, \dots, x_Q$ or $x_1, \dots x_{Q-i-1}, x_{Q-i}, \dots, x_Q$ w\o replacement w replacement w vo replacement w replacement
- (Standard) hybrid argument far from tight
 - (Distinguishing advantage) x (num of hybrids) too large

Improved Hybrid Argument

- Main idea: break dependency between halves
- Denote 1st sequence by $x_1, x_2, \dots, x_{Q/2}, y_1, y_2, \dots, y_{Q/2}$
- 1st distribution: elements chosen using (same) permutation
- 1st intermediate hybrid: $x_1, x_2, ..., x_{Q/2}$ and $y_1, y_2, ..., y_{Q/2}$ chosen using independent permutations
- Reduction from (one-way) CC:
- Alice gets 1st half of sequence, Bob gets 2nd half (decide if they obtain same or independent permutations)
 - Marginals are identical

Permutation Dependence

- (one way) CC problem permutation dependence (PDEP):
 - Alice and Bob decide if their inputs were drawn using same or independent permutations
- PDEP to streaming reduction:

UDISJ-> PDEP

- Communication cost \ advantage tradeoff for PDEP?
- Reduction from (unique) disjointness (UDISJ)
 - Each player receives a set of size n (domain size O(n)), need to decide if sets intersect or disjoint
 - Theorem (informal)[BM'13, GW'14]: if Alice and Bob communicate c bits for **DISJ** (**UDISJ**) in the **worst case**, their **max advantage** is O(c/n)
 - Even when given access to public randomness

Alice a_1, \dots, a_n

Bob b_1, \dots, b_n

UDISJ-> PDEP

- Theorem (informal): there is a public coin local reduction that converts a UDISJ instance of size n=N/Q to a PDEP instance of size Q
 - Shorter inputs harder from PDEP, but easier for UDISJ
- Overall: UDISJ -> PDEP-> streaming bounds **max advantage** for hybrid game by $O(c/n) = O(S/(N/Q)) = O(Q \cdot S/N)$

The Full Hybrid Argument

- Once dependency between 2 halves broken:
 - Continue recursively (tree structure)
- 2'nd level: 2 games of distinguishing stream distributions on Q/2 elements
- Final distribution: Q elements divided into Q independent permutations == random function
- Max advantage for each level: $O(Q \cdot S/N)$
- **Total** max advantage: $O(\log Q \cdot Q \cdot S/N)$

Conclusions

- New streaming switching lemma bound $O(\log Q \cdot Q \cdot S/N)$
- Tight up to poly-log factors
- Reduction from CC to streaming uses unconventional hybrid argument
- Standard streaming problems defined in worst case setting
 - Gives freedom to choose hard distributions for CC problem
- In our (cryptographic) setting streams distributions fixed
 - Hybrid argument reduction applicable to more problems?
- Extension: multi-pass streaming switching lemma
 - Streaming alg allowed multiple passes over data

Thanks for your attention!