On the Memory-Tightness of Hashed ElGamal

Ashrujit Ghoshal

University of Washington

Stefano Tessaro

University of Washington

Eurocrypt 2020

Security reductions

assumption

P

CDH, DDH, DL, factoring ...

scheme

S

ElGamal, Cramer-Shoup, ECDSA, RSA-OAEP ···

Reduction R

Security reductions

time t_B advantage $arepsilon_B$

Reduction *R*

time t_A advantage $arepsilon_A$

Tight reductions

time t_B advantage $arepsilon_B$

Reduction *R*

time t_A advantage $arepsilon_A$

Goal: tightness
$$\Rightarrow t_B \approx t_A, \varepsilon_B \approx \varepsilon_A$$

Time is not the only important resource!

Security reductions: memory perspective [ACFK17]

Reduction R

time t_B memory m_B advantage $arepsilon_B$

time t_A memory m_A advantage $arepsilon_A$

Memory-tight reductions [ACFK17]

memory m_B

$$m_B = m_A + m_R$$

uses memory m_R

Reduction R

memory m_A

Goal: memory-tightness $\implies m_B \approx m_A$

Common proof technique: m_R small \Rightarrow memory-tight reduction

Motivation: more memory ⇒ faster solution

Discrete logarithm (DL) in prime fields

Can we always make a reduction memory-tight?

This talk: certain reductions cannot be memory-tight, provably

Prior work

- mUFCMA to UFCMA
 - [ACFK17]
 - mCR_t to CR_t
 - [ACFK17,WMHT18]
- mU-mOW to mU-OW

[WMHT18]

deneric

Hashed ElGamal used in practice eg. SECG SEC-1, ISO/IEC 18033-2, IEEE 1363a and ANSI X9.63

Hashed ElGamal KEM

Group \mathbb{G} , generator g, order p

KEM-CCA security \equiv Oracle Diffie-Hellman assumption [ABR `01]

Oracle Diffie-Hellman assumption (ODH)

$$Pr[b = b'] = \frac{1}{2} + negl$$

ODH in the random oracle model

Strong Diffie-Hellman assumption (SDH) (aka gap-DH)

Strong Diffie-Hellman (SDH) ⇒ ODH [ABR '01]

Theorem. ODH-adversary using memory $m_A \Longrightarrow$ SDH-adversary using memory m_B

$$m_B = m_A + O(q_H + q_D)$$

H queries

 $\# D_{v}$ queries

not me.

SDH⇒ODH: the reduction

SDH \Rightarrow ODH: the reduction- D_v queries

SDH \Rightarrow ODH: the reduction- H queries

Theorem. $\forall k \exists O(k)$ -query ODH-adv A^* s.t.

- $Adv_{\mathbb{G}}^{ODH}(A^*) \approx 1$,
- \forall PPT black-box reductions R using memory m,

$$Adv_{\mathbb{G}}^{SDH}(R^{A^*}) = non-negl \Rightarrow m = \Omega(k \log p)$$
.

Issue: For which groups \mathbb{G} ? DL easy in $\mathbb{G} \Rightarrow$ memory tight \mathbb{R}

Resolution: R only makes black-box access to the group \Rightarrow generic group model

Main theorem

Theorem. In the generic group model, $\forall k \exists O(k)$ -query ODH-adv A^* s.t.

- $Adv^{ODH}(A^*) \approx 1$,
- \forall PPT black-box reductions R using memory m,

$$Adv^{SDH}(R^{A^*}) = non-negl \Rightarrow m = \Omega(k \log p)$$
.

forwarding

Main theorem

Theorem. In the generic group model, $\forall k \exists O(k)$ -query ODH-adv A^* s.t.

- $Adv^{ODH}(A^*) \approx 1$,
- \forall PPT restricted black-box reductions R using memory m,

$$Adv^{SDH}(R^{A^*}) = non-negl \Rightarrow m = \Omega(k \log p)$$
.

Constructing A*

Intuition: A^* is useful to R only if R accomplishes memory-intensive task

Recall: $D_{\nu}(Y) = H(Y^{\nu})$

Adversary A*

Proof setting

Generic group model [Shoup 97, Maurer 05]

$$\sigma: \mathbb{Z}_p \to \{0,1\}^{\lambda}$$
$$x \in \mathbb{Z}_p: \sigma(x) \triangleq g^x$$

Repeat queries-1

Repeat queries- 2

Proof overview

 (R_1, R_2) answer consistently

Many
$$\left(> \frac{k}{80} \right)$$
 repeat queries

Need $m = \Omega(k \log p)$:
intuitive, proof by
compression argument,
many subtleties

Few
$$\left(\leq \frac{k}{80} \right)$$
 repeat queries

Winning adversary against the **permutation game**

Advantage negligible

The reduction's perspective

 R_2 needs to figure out π for consistent answers

 \rightarrow Use O_{ν} oracle!

Using the O_v oracle

Permutation game captures exactly this setting, combinatorially

Permutation game (PG)
$$O(\vec{x}, \vec{y}) = \begin{cases} 1 & \text{if } x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(k)} = y_1 y_2 \cdots y_k \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi \stackrel{\$}{\leftarrow} S_k$$

$$\overrightarrow{x} = x_1 x_2 \cdots x_k$$

$$\overrightarrow{y} = y_1 y_2 \cdots y_k$$

$$Adv^{PG}(A) = Pr[\pi' = \pi]$$

Lemma: If $(\overrightarrow{x_1}, \overrightarrow{y_1}), \dots, (\overrightarrow{x_u}, \overrightarrow{y_u})$ are the queries by \overrightarrow{A} that return 1 and $\operatorname{rank}(\overrightarrow{x_1}, \cdots, \overrightarrow{x_u}) \leq \frac{k}{80}$, then, $\operatorname{Adv}^{\operatorname{PG}}(A) = \operatorname{negl}$.

 (R_1, R_2) make few repeat queries $\Rightarrow A$ of this form that wins PG if (R_1, R_2) answer consistently

Conclusions

- Impossibility result for a scheme with algebraic structure
- Impossibility result can be "bypassed"
 - Memory-tight reduction in the Algebraic Group Model [FKL18]

 Adv sends a representation of the group elements for every query
 - Concurrent work [Bhattacharya 20] complements our result Different Hashed ElGamal variant, pairings

Open problems

• Memory lower bound for rewinding R?

Our conjecture: $m = \Omega(k \log k)$

- Separation for "memory-adaptive" reduction?
- Memory lower bound for concrete schemes without the generic group model?
- Memory lower bounds for other concrete schemes?

