On the Memory-Tightness of
Hashed ElGamal

Ashrujit Ghoshal Stefano Tessaro
University of Washington University of Washington

Eurocrypt 2020

Security reductions

assumption scheme
CDH, DDH, DL, factoring ... ElGamal, Cramer-Shoup, ECDSA, RSA-OAEP ---
Reduction R
B = RA = A

W i

Security reductions

i

time tp

advantage €5

Reduction R

=

A

time tA

advantage ¢4

Tight reductions

"

time tp

B =

advantage €5

Reduction R

=

A

time tA

advantage ¢4

Goal: tightness = tp = ty, 5 = &4

Time is not the only important resource!

Security reductions: memory perspective [ACFK17]

Reduction R
B =R“ A
time tp time ty4
memory mg memory my

advantage €5 advantage ¢4

Memory-tight reductions [ACFK17]

uses memory mp
Reduction R
B =R’ A
memory mg memory my

mg = My + Mp

Goal: memory-tightness = mp ~ my

Common proof technique: mg small & memory-tight reduction

Motivation: more memory = faster solution

Discrete logarithm (DL) in prime fields

Goal: security wrt adversary with time 219 memory 279 .
memory-tight
R4: time 216%, memory 279
not secure
2048
|
log(time) | PECHre

I
® | \ non-memory-tight

R4: time 210, memory 2169

Can we always make a
reduction memory-tight?

This talk: certain reductions cannot be memory-tight, provably

Prior work

Here

Hashed ElGamal used in practice eg.
SECG SEC-1, ISO/IEC 18033-2, IEEE

1363a and ANSI X9.63

Hashed ElGamal KEM

Group G, generator g, orderp

ok (sk,C)
Gen Encap Decap
uez, X
pk « g°%, sk C < g“ K < H(pk") K < H(C)

KEM-CCA security = Oracle Diffie-Hellman assumption [ABR "01]

Oracle Diffie-Hellman assumption (ODH)

$

$
Ko < H(g"™), Ky < {0,1}"" &5

$
gu’gv’ Kb b < {0'1}
Dy(Y) D L D,(Y) = {
v
! 1
b Pr[b = b'] = = + negl

H(YY) ify # g*
1 otherwise

ODH in the random oracle model

H(Y") ifY # g*
1 otherwise

:
u,v < Zp
Ky <« H(g""), Ky < (0,1 len A
$
D, (Y) D, L | D,(Y) = {
H(X)
H -
' 1 random oracle
b © Prlb=b"] =7 +negl

SDH = ODH [ABR ‘01]

Strong Diffie-Hellman assumption (SDH) (aka gap-DH)

g4 9"

0,(X,Y)

0,

/ 0,(X,Y) = {

1 ifY =XV
0 otherwise

Pr[Z = g"’] = negl

Strong Diffie-Hellman (SDH) = ODH [ABR ‘01]

Theorem. ODH-adversary using memory m, =
SDH-adversary using memory mg

mg =my + 0(qy + qp)

4
— /7

H queries # D, queries

SDH=ODH: the reduction

g

gt 9", K

DU(YZ)

H(X>)

,

Main Problem: Consistency!
H(Y") = D,(Y)

gt g°

Fix: use O, oracle

SDH=O0DH: the reduction- D,, queries

g

g9g“ 9", K

Dv(yz)

K & {0,1)hen X

X [HX) -

X1 H(X1)
X, H(X3)

Y9 D (Y1)
Y, H(X3)

0,(X,Y)

CXv=yY

SDH=0DH: the reduction- H queries

g

g%, gV, K

H(X>)

¥

]

K (— {O 1}hLen e

=

T EanG

41 H(X1)
X, D,(Y,)

Y Dv(Yz)

0,(g% X2) =1 = return X;

0,(X,Y)

‘X”;y

x

Main theorem inefficient

Theorem. Vk 30 (k)-query ODH-adv A/* s.t.

- AdvOPH (49 ~ 1,

*V PPT black-box reductions R using memory m,
AdVgDH(RA*) = non—negl = m = Q(klogp) .

Issue: For which groups G? DL easy in @ = memory tight R

Resolution: R only makes black-box access to the group =
generic group model

Main theorem

Theorem. In the generic group model, vk 30(k)-query ODH-
adv A" s.t.

e AdvOPH(4) = 1,
* V PPT black-box reductions R using memory m,

AdVSDH(RA*) = non—negl > m = Q(k logp) .

o,

+ no rewinding!

forwarding

Main theorem

Theorem. In the generic group model, Vk 30(k)-
query ODH-adv A” s.t.

- AdvOPH(49) = 1,

*V PPT restricted black-box reductions R using
memory m,

AdVSDH(RA*) = non—negl = m = Q(klogp) .

Constructing A"

Force R to

intensive task

A*

complete memory-

A

*

v

R succeewils

brute force to
break ODH

output
random bit

Intuition: A" is useful to R only if R
accomplishes memory-intensive task

Recall: D,(Y) = H(Y"Y)

Adversary A™
u 1% K
\ ” g g,
S . A |
ll,lz,“',lk(_zp gll R w
D, query -
dy
D,, query g
$ dy
T < Sk """"""""""""""""""""""""""""""""" _
H query g’
hy
Vel
dpy = hi V i € [K] H query g™
Answers consistent? e
s = IR
break ODH by brute force output random bit

Proof setting

\

A*
D,, queries <
; \.
T < Sk
H queries <

/

Generic

group
oracle

Generic group model [Shoup 97, Maurer 05]

0:Z, > {0,1}*
X € ZLy: 0(x) £ g*

o(x),0(y) | Generic o(x),0(y) '

o(x+y) group y=v-X
oracle «

a(x),0(y) | Generic o(x),0(y)

Repeat queries- 1 oty | ErOwP . yives

4

oracle <

aq Rl E / Ov

repeat queries

Generic

group
oracle

a(x),0(y),| Generic

Repeat queries- 2 " oGc4y) | ErouP

c(0),00)

y=v-x

A

h oracle
aq R
- E 0,

repeat queries

Generic

group
oracle

Proof overview

(R4, R,) answer consistently b

Many (> %) repeat queries

L3

Few (S
80

) repeat queries

Needm = Q(k log p):
intuitive, proof by
compression argument,
many subtleties

Winning adversary against
the permutation game

v

Advantage negligible

The reduction’s perspective

Generic

group
oracle

R, needs to figure out i for consistent answers

—Use 0, oracle!

Using the O, oracle

14

Ani) =

Oy(a;i, bj)
R, B ?
n(j) =i 0,
Oy(ay'ay? -+ a;k, by by? - by*)
R, B ? R
. Xn()Xmn(2) " Xnk) = Y1Y2 " Yk 0,

Permutation game captures exactly this setting, combinatorially

. 0(x, y) = {1 if Xr(1)Xm(2) ** Xn(k) = Y1Y2
Permutation game (PG ’ 0 otherwise.

s e yk

$ S e
TT < k 7 | _)
A o enky ek ¥ = i,
> 0 y = ylyz . yk
T , AdVPG(A) — Pr[n’ = 7]

Lemma: If (x{,y,), :-,(x,, ¥,) are the queries by A that
ik
return 1 and rank(x{, -:-, x,) < > then,

AdvPG (A) = negl.

(R4, R,) make few repeat queries = A of this form that wins PG if
(R4, R,) answer consistently

Conclusions

* Impossibility result for a scheme with algebraic structure

* Impossibility result can be “bypassed”
* Memory-tight reduction in the Algebraic Group Model [FKL18]
Adv sends a representation of the group elements for every query
 Concurrent work [Bhattacharya 20] complements our result
Different Hashed ElGamal variant, pairings

Open problems

* Memory lower bound for rewinding R?
Our conjecture: m = Q(k log k)

* Separation for “memory-adaptive” reduction?

* Memory lower bound for concrete schemes without the generic
group model?

* Memory lower bounds for other concrete schemes?

