How to extract useful randomness from unreliable sources

Divesh Aggarwal Maciej Obremski

CQT & National University of Singapore

Imperial College London

Ivan Visconti

University of Salerno

João Ribeiro

Luisa Siniscalchi

University of Salerno → Aarhus University

Eurocrypt 2020

Randomness and cryptography

Perfect randomness

In practice, randomness sources X are **not** perfect!

Weaker assumption: min-entropy lower bound

$$\max_{x} \Pr[X = x] \le 2$$

Cryptography

 2^{-k}

 $\mathbf{H}_{\infty}(X) \ge k$ \boldsymbol{k} bits of min-entropy

Randomness extraction

$$\max_{x} \Pr[X = x] \le 2$$

Multi-source extraction: combine several independent weak sources (e.g., sampled from different devices/locations)

Multi-source randomness extraction

$\mathbf{H}_{\infty}(X_i) \geq k \quad \forall i \quad + \quad \text{independence}$

Need to trust several devices at different locations! (especially when dealing with *public* randomness!)

What happens if some sources are corrupted?

SHELA sources: Multi-source randomness extraction without trust

 (t, ℓ, k) -SHELA source: <u>Somewhere-Honest</u> Entropic Look Ahead

1. Adversary chooses $\ell - t$ blocks to corrupt

SHELA sources: Multi-source randomness extraction without trust

1. Adversary chooses $\ell - t$ blocks to corrupt 2. Adversary fixes corrupted block based on previous samples Adversary knows positions and distributions of honest blocks **Honest** X_i 's are independent of each other and satisfy $\mathbf{H}_{\infty}(X_i) \geq k$

 (t, ℓ, k) -SHELA source: Somewhere-Honest Entropic Look Ahead

Some other adversarial source models

Old:

Santha-Vazirani sources Bit-fixing sources [Dodis 2001]: *Bias-control limited sources*

Recent:

[Austrin, Chung, Mahmoody, Pass, Seth 2014]: *p-tampering attacks* [Bentov, Gabizon, Zuckerman 2016]: *p-resettable sources* [Chattopadhyay, Goodman, Goyal, Li 2019]: Multi sources w/ local dependence [Dodis, Vaikuntanathan, Wichs 2019]: Extractor-dependent sources [Ball, Goldreich, Malkin 2019]: Somewhat-dependent sources

Can we extract perfect randomness from SHELA sources? No

impossibility for p-resettable sources

[Bentov, Gabizon, Zuckerman 2016]

Follows from impossibility for special subset of Santha-Vazirani sources

Can we extract "useful" randomness from SHELA sources?

Regime of interest: $t=\gamma\cdot\ell$ (constant fraction of corruptions), ℓ larger than some constant

impossibility for SHELA sources must have error $\epsilon = \Omega(1 - \gamma)$

Holds even if honest blocks are uniform!

The next best thing: somewhere-random sources

 (t', ℓ') -SR source: <u>Somewhere</u>-<u>R</u>andom

SR sources and one-sided error

- Always outputs YES
- $x \not\in \mathcal{L}$ Outputs NO with probability 2/3, YES otherwise

Only guaranteed under uniform randomness!

YES if all output YES

NO otherwise

Also one-sided error!

ntime:
$$O(\ell' \cdot t_{\mathcal{A}})$$

wish to:

Minimize
$$\ell'$$

ii) Maximize length of Y_i 's

Crypto applications of SR sources

Overall: non-interactive primitives with a "somewhere-random CRS"

We construct (from generic complexity assumptions):

- Non-interactive witness indistinguishable proof systems
- Non-interactive commitments

Elsewhere:

• Publicly-verifiable proof systems [Scafuro, Siniscalchi, Visconti 2019]

"Somewhere-extraction" from SHELA sources

Want: #output blocks ℓ' and error ϵ small, output block length m large

Why? If X_i and X_j are honest, then $2\text{Ext}(X_i, X_j) \approx \text{unif}$

Cons:

)
$$\ell' = \Omega(\ell^2)$$

ii) Non-negligible error when k < 0.44n

- **Goal:** Design Ext : $\{0,1\}^{\ell \cdot n} \to \{0,1\}^{\ell' \cdot m}$ such that for every (t,ℓ,k) -SHELA source X,
 - $\mathsf{Ext}(X) \approx_{\epsilon} \mathsf{convSR}$
 - Naive approach: apply 2-source extractor 2Ext to every pair of blocks of X

- Can we do better?

Better somewhere-extraction from SHELA sources

 $X_i \in \{0, 1\}^n$ $k \ge 0.51n$

Better somewhere-extraction from SHELA sources X_1 X_3 X_5

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

Better somewhere-extraction from SHELA sources X_1 X_3 X_5

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

left source

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

$Y_1 = \mathsf{Ext}_1(X_1, \bigcup)$

Better somewhere-extraction from SHELA sources

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

$$X_1$$

left source

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

$$Y_1 = \mathsf{Ext}_1(X_1, \mathfrak{V})$$

$$Y_2 = \mathsf{Ext}_2(X_1 \bigcup, X_3)$$

Better somewhere-extraction from SHELA sources

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

$$Y_1 = \mathsf{Ext}_1(X_1, \mathbf{v})$$

$Y_2 = \mathsf{Ext}_2(X_1 \bigcup, X_3)$

$Y_3 = \mathsf{Ext}_3(X_1 \bigcup X_3, \bigcup)$

left source

 X_1

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

$$Y_1 = \mathsf{Ext}_1(X_1, \mathbf{v})$$

$$Y_2 = \mathsf{Ext}_2(X_1 \bigcup, X_3)$$

$$Y_3 = \mathsf{Ext}_3(X_1 \bigcup X_3, \bigcup)$$

$$Y_4 = \mathsf{Ext}_4(X_1 \bigcup X_3, \bigcup, X_5)$$

left source

 X_1

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

$$Y_1 = \mathsf{Ext}_1(X_1, \mathbf{\mathfrak{V}})$$

$$Y_2 = \mathsf{Ext}_2(X_1 \bigcup, X_3)$$

$$Y_3 = \mathsf{Ext}_3(X_1 \bigcup X_3, \bigcup)$$

$$Y_4 = \mathsf{Ext}_4(X_1 \bigcup X_3, \bigcup, X_5)$$

left source

 X_1

$$X_i \in \{0,1\}^n$$
$$k \ge 0.51n$$

unbalanced 2-source extractors (left source: low entropy, right source: high entropy)

 $\mathsf{Ext}_i: \{0,1\}^{i \cdot n} \times \{0,1\}^n \to \{0,1\}^m$

i) $Y_2 \approx U_m$ ii) whp over fixing of Y_2 , $Y_4 pprox U_m$

Y is ϵ -close to (t',ℓ') -convSR source in $\{0,1\}^{\ell'\cdot m}$ $\ell' = \ell - 1; \quad t' = t - 1;$ works with only $\epsilon = 2^{-\Omega(n)}; \quad m = \Omega(n);$ 2 honest blocks!

Somewhere-extraction from **Iow-entropy** SHELA sources

Want: Somewhere-extractor for $(t, \ell, k = \delta n)$ -SHELA, for δ arbitrarily small constant

Idea: Combine previous high-entropy construction with somewhere-condensers

Essentially the same parameters: $\ell' = O_{\delta}(\ell); \quad t' = t - 1;$ works with only $\epsilon = 2^{-\Omega_{\delta}(n)}; \quad m = \Omega_{\delta}(n);$ 2 honest blocks!

[Raz 2005], [Barak, Kindler, Shaltiel, Sudakov, Wigderson 2005], [Zuckerman 2007], [Li 2011]

Somewhere-extraction from a weak source

Can we extract useful convSR sources without exploiting structure of SHELA sources?

Treat (t, ℓ, k) -SHELA source $X \in \{0,$

Naive somewhere-extractor: Ext: $\{0,1\}^{n'} \times [2^d] \rightarrow \{0,1\}^m$ any strong seeded extractor

$$\mathsf{Ext}(X,1)$$
 $\mathsf{Ext}(X,2)$

Problem: Superpolynomial #blocks if error ϵ is negligible!

Can we do better?

$$1\}^{\ell \cdot n}$$
 as weak $(n' = \ell \cdot n, k' = t \cdot k)$ -source

$$\mathsf{Ext}(X,2^d) \quad \approx_\epsilon \ \mathbf{SR\ source}$$

Somewhere-extraction from a weak source

Can we extract useful convSR sources without exploiting structure of SHELA sources?

Treat (t, ℓ, k) -SHELA source $X \in \{0,$

 $\texttt{#output blocks} \geq \frac{n'-k'}{\epsilon+2^{-m}}$

Proof: Somewhere-extractor

Open Q: Prove analogous result when m = 1

$$1\}^{\ell \cdot n}$$
 as weak $(n' = \ell \cdot n, k' = t \cdot k)$ -source

Somewhere-extractor for (n',k')-sources with error ϵ , output block length m

If m isn't small and ϵ is negligible, need superpolynomial #output blocks

disperser, so can apply well-known lower bounds [Radhakrishnan, Ta-Shma 2000]

No!

Summing up

- Can't extract perfect randomness
- blocks!)
- SR sources are very useful (algorithms + crypto)
- Can't extract useful SR sources without exploiting structure of SHELA source

Thanks for watching!

SHELA sources model multiple randomness sources corrupted by strong adversary

• Can extract great SR sources from low-entropy SHELA sources (only need 2 honest