
Everybody’s a Target:
Scalability in Public-Key Encryption

Benedikt Auerbach1 Federico Giacon2 Eike Kiltz3

1IST Austria, Klosterneuburg, Austria
2Gnosis Service GmbH, Berlin, Germany

3Horst Görtz Institut für IT-Sicherheit, Ruhr-Universität Bochum, Germany

May 04, 2020



Agenda

I multi-instance security and the scaling factor
I the scaling behavior of Hashed-ElGamal key encapsulation
I generic group lower bounds for multi-instance CDH-type problems

2 / 24



Multi-instance security

I usual security definition for cryptographic schemes
I adversary unable to compromise a single user

This work: Scaling of security in the number of users
How much more computational effort does it take to compromise n
users compared to compromising one?

3 / 24



Multi-instance security

I usual security definition for cryptographic schemes
I adversary unable to compromise a single user

This work: Scaling of security in the number of users
How much more computational effort does it take to compromise n
users compared to compromising one?

3 / 24



Multi-instance security

I usual security definition for cryptographic schemes
I adversary unable to compromise a single user

I this work: scaling of security in the number of users
I how much more computational effort does it take to compromise all

of n users compared to compromising one?

3 / 24



Scaling behavior of cryptographic schemes

t x
compromised users1

effort

4 / 24



Scaling behavior of cryptographic schemes

t x
compromised users1 n

nt

effort

worst case

bes
t ca

se

4 / 24



Scaling behavior of cryptographic schemes

t x
compromised users1 n

nt

effort

worst case

bes
t ca

se

actual behavior?

4 / 24



Background

I theory: parameters of schemes chosen such that even breaking a
single instance is infeasible

I in particular impossible to break many instances
I practice: use of outdated parameters widespread

I breaking of single instance within reach
I bad scaling behavior could enable large-scale attack

5 / 24



Logjam attack

I bad scaling-behavior exploited in Logjam attack [ADGG+15]
I attacked TLS in the finite-field setting for primes of length 512
I effort to break 220 instances only doubles compared to breaking one

6 / 24



Logjam attack
Scaling behavior of ElGamal for subgroups of F∗

p , p prime of length 512

t x
compromised users1

effort

Logjam attack

Effort to break 220 instances only doubles compared to breaking one

7 / 24



Our contributions

I scaling behavior; theoretical perspective
I adapt multi-instance security to key-encapsulation mechanisms
I define the scaling factor of schemes

I scaling behavior; application to Hashed-ElGamal (HEG) key
encapsulation

I consider HEG for different parameter settings
I compute scaling factor in idealized models

8 / 24



Multi-Instance Security
and the

Scaling Factor

9 / 24



Reminder: key-encapsulation mechanisms

I Key-encapsulation mechanism KEM consists of algorithms

par $← Par

(pk, sk) $← Gen(par)

(K , C) $← Enc(par , pk)

K ← Dec(par , sk, C)

10 / 24



Security notions for KEMs
CCA: single-instance setting

b $← {0, 1}
par $← Par
(pk, sk) $← Gen(par)
(K∗, C∗) $← Enc(par , pk)
if b = 0: K∗ ← $

win← [b = b′]

CCA

par , pk, K∗, C∗

C
Dec(par , sk , C)

b′

A

Advantage: AdvCCA
KEM(A) = Pr[win]− 1/2

11 / 24



Security notions for KEMs
n-CCA: multi-instance setting [BelRisTes12]

~b $← {0, 1}n

par $← Par
for i ∈ {1, .. , n}:

(pki , ski )
$← Gen(par)

(K∗i , C∗i ) $← Enc(par , pki )
if bi = 0: K∗i ← $

win← [
⊕n

i=1 bi = b′]

n-CCA

par , ~pk, ~K∗, ~C∗

C , i
Dec(par , ski , C)

b′

A

Advantage: Advn-CCA
KEM (A) = Pr[win]− 1/2

11 / 24



Scaling factor

I how does the security of a key-encapsulation mechanism (KEM)
scale in the number of users?

I we define the scaling factor of KEM

SF(n) = MinTime(n)
MinTime(1)

I MinTime(n): running time of fastest adversary breaking
n-CCA security users with success probability 1

Lemma
1 ≤ SF(n) ≤ n

12 / 24



Scaling factor

I how does the security of a key-encapsulation mechanism (KEM)
scale in the number of users?

I we define the scaling factor of KEM

SF(n) = MinTime(n)
MinTime(1)

I MinTime(n): running time of fastest adversary breaking
n-CCA security users with success probability 1

Lemma
1 ≤ SF(n) ≤ n

12 / 24



The Scaling Behavior of
Hashed-ElGamal

13 / 24



Overview on our results

I considered KEM: Hashed-ElGamal
I consider variants with different shared parameters (granularity)
I elliptic-curve setting
I bounds in generic-group model and random-oracle model

I G group of prime order p generated by g

Granularity par sk pk SFHEG(n)
high (G, p, g) x gx Θ(

√
n)

medium (G, p) (g , x) (g , gx ) Θ(
√

n)
low ⊥ ((G, p, g), x) ((G, p, g), gx ) Θ(n)

14 / 24



Overview on our results

I goal: bound SFHEG(n) = MinTime(n)
MinTime(1)

I upper bound
I known generic algorithms:

MinTime(n) =
{

O(√np) high/med. granularity
O(n√p) low granularity

I known generic bound: MinTime(1) = Ω(√p)
I lower bound

I known generic algorithm: MinTime(1) = O(√p)
I this work: generic-group bounds

MinTime(n) =
{

Ω(√np) high/med. granularity
Ω(n√p) low granularity

15 / 24



Overview on our results

I goal: bound SFHEG(n) = MinTime(n)
MinTime(1)

I upper bound
I known generic algorithms:

MinTime(n) =
{

O(√np) high/med. granularity
O(n√p) low granularity

I known generic bound: MinTime(1) = Ω(√p)

I lower bound
I known generic algorithm: MinTime(1) = O(√p)
I this work: generic-group bounds

MinTime(n) =
{

Ω(√np) high/med. granularity
Ω(n√p) low granularity

15 / 24



Overview on our results

I goal: bound SFHEG(n) = MinTime(n)
MinTime(1)

I upper bound
I known generic algorithms:

MinTime(n) =
{

O(√np) high/med. granularity
O(n√p) low granularity

I known generic bound: MinTime(1) = Ω(√p)
I lower bound

I known generic algorithm: MinTime(1) = O(√p)
I this work: generic-group bounds

MinTime(n) =
{

Ω(√np) high/med. granularity
Ω(n√p) low granularity

15 / 24



Generic-group lower bound on MinTimeHEG(n)
Overview

n-CCAHEG
GGM====⇒

ROM ∼ random-oracle model
n-gapCDH ∼ multi-instance gap Diffie-Hellman problem

AGM ∼ algebraic-group model [FKL18]
n-gapDL ∼ multi-instance gap discrete-logarithm problem

GGM ∼ generic-group model

16 / 24



Generic-group lower bound on MinTimeHEG(n)
Overview

n-CCAHEG
ROM====⇒n-gapCDHGGM====⇒

ROM ∼ random-oracle model
n-gapCDH ∼ multi-instance gap Diffie-Hellman problem

AGM ∼ algebraic-group model [FKL18]
n-gapDL ∼ multi-instance gap discrete-logarithm problem

GGM ∼ generic-group model

16 / 24



Generic-group lower bound on MinTimeHEG(n)
Overview

n-CCAHEG
ROM====⇒n-gapCDHAGM====⇒GGM====⇒ n-gapDL

ROM ∼ random-oracle model
n-gapCDH ∼ multi-instance gap Diffie-Hellman problem

AGM ∼ algebraic-group model [FKL18]
n-gapDL ∼ multi-instance gap discrete-logarithm problem

GGM ∼ generic-group model

16 / 24



Generic-group lower bound on MinTimeHEG(n)
Overview

n-CCAHEG
ROM====⇒n-gapCDH(AGM)=====⇒GGM====⇒GGM====⇒ n-gapDL

ROM ∼ random-oracle model
n-gapCDH ∼ multi-instance gap Diffie-Hellman problem

AGM ∼ algebraic-group model [FKL18]
n-gapDL ∼ multi-instance gap discrete-logarithm problem

GGM ∼ generic-group model

16 / 24



Generic-Group Lower Bounds for
Multi-Instance CDH-Type Problems

17 / 24



Multi-instance CDH-type problems
Multi-instance discrete logarithm problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp
Xi ← gxi

win← [∀i : zi = xi ]

n-DL

G, ~X

~z

A

Advantage: Advn-DL(A) = Pr[win]

18 / 24



Multi-instance CDH-type problems
Multi-instance gap discrete logarithm problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp
Xi ← gxi

d ←
{
1 if g x̃ ỹ = Z̃
0 else

win← [∀i : zi = xi ]

n-gapDL

G, ~X

X̃ , Ỹ , Z̃

d

~z

A

Advantage: Advn-gapDL(A) = Pr[win]

18 / 24



Multi-instance CDH-type problems
Multi-instance gap computational Diffie-Hellman problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp; yi
$← Zp

Xi ← gxi ; Yi ← gyi

d ←
{
1 if g x̃ ỹ = Z̃
0 else

win← [∀i : Zi = gxi yi ]

n-gapCDH

G, ~X , ~Y

X̃ , Ỹ , Z̃

d

~Z

A

Advantage: Advn-gapCDH(A) = Pr[win]

18 / 24



Multi-instance generic-group lower bounds
Overview

problem granularity MinTime
n-DL high Ω(√np) [Yun15]
n-DL low Ω(√np) [GDJY13]

Generic-group bounds for multi-instance Diffie-Hellman-type problems
I G of prime order p
I n instances

19 / 24



Multi-instance generic-group lower bounds
Overview

problem granularity MinTime
n-DL high Ω(√np) [Yun15]
n-DL low Ω(√np) [GDJY13]

this work
n-gapDL high/med. Ω(√np)
n-gapCDH high/med. Ω(√np)
n-gapDL low Ω(n√p)
n-gapCDH low Ω(n√p)

Generic-group bounds for multi-instance Diffie-Hellman-type problems
I G of prime order p
I n instances

19 / 24



Multi-instance generic-group lower bounds
Overview

problem granularity MinTime
n-DL high Ω(√np) [Yun15]
n-DL low Ω(√np) [GDJY13]

this work
n-gapDL high/med. Ω(√np)
n-gapCDH high/med. Ω(√np)
n-gapDL low Ω(n√p)
n-gapCDH low Ω(n√p)
n-polyDLd high Ω(

√
np/d)

Generic-group bounds for multi-instance Diffie-Hellman-type problems
I G of prime order p
I n instances

19 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

I low / medium granularity
I derived from high granularity

result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapCDH

I high granularity
I show that bound for n-gapDL carries over to n-gapCDH using AGM

I low / medium granularity
I derived from high granularity result

21 / 24



Intuition behind proofs
n-gapCDH

I high granularity
I show that bound for n-gapDL carries over to n-gapCDH using AGM

I low / medium granularity
I derived from high granularity result

21 / 24



Summary and Future Directions

I summary
I we define the scaling factor SF, which measures the scaling of a

scheme’s security in the number of users
I we compute lower bounds on SF for variants of the Hashed-ElGamal

KEM in the generic-group model
I we prove generic lower bounds on the hardness of various

multi-instance CDH-type problems
I future directions

I revisit the KEM-DEM paradigm
I consider preprocessing

ia.cr/2019/364

22 / 24

https://eprint.iacr.org/2019/364


References I

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot,
Eric Wustrow, Santiago Zanella Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in practice.
In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM
CCS 15, pages 5–17. ACM Press, October 2015.

Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro.
Multi-instance security and its application to password-based
cryptography.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 312–329. Springer, Heidelberg, August
2012.

23 / 24



References II

Georg Fuchsbauer, Eike Kiltz, and Julian Loss.
The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

Juan A. Garay, David S. Johnson, Aggelos Kiayias, and Moti Yung.
Resource-based corruptions and the combinatorics of hidden
diversity.
In Robert D. Kleinberg, editor, ITCS 2013, pages 415–428. ACM,
January 2013.

Aaram Yun.
Generic hardness of the multiple discrete logarithm problem.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 817–836. Springer, Heidelberg,
April 2015.

24 / 24


