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Agenda

I multi-instance security and the scaling factor
I the scaling behavior of Hashed-ElGamal key encapsulation
I generic group lower bounds for multi-instance CDH-type problems
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Multi-instance security

I usual security definition for cryptographic schemes
I adversary unable to compromise a single user

This work: Scaling of security in the number of users
How much more computational effort does it take to compromise n
users compared to compromising one?
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Scaling behavior of cryptographic schemes
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Background

I theory: parameters of schemes chosen such that even breaking a
single instance is infeasible

I in particular impossible to break many instances
I practice: use of outdated parameters widespread

I breaking of single instance within reach
I bad scaling behavior could enable large-scale attack
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Logjam attack

I bad scaling-behavior exploited in Logjam attack [ADGG+15]
I attacked TLS in the finite-field setting for primes of length 512
I effort to break 220 instances only doubles compared to breaking one
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Logjam attack
Scaling behavior of ElGamal for subgroups of F∗

p , p prime of length 512
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Our contributions

I scaling behavior; theoretical perspective
I adapt multi-instance security to key-encapsulation mechanisms
I define the scaling factor of schemes

I scaling behavior; application to Hashed-ElGamal (HEG) key
encapsulation

I consider HEG for different parameter settings
I compute scaling factor in idealized models
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Multi-Instance Security
and the

Scaling Factor
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Reminder: key-encapsulation mechanisms

I Key-encapsulation mechanism KEM consists of algorithms

par $← Par

(pk, sk) $← Gen(par)

(K , C) $← Enc(par , pk)

K ← Dec(par , sk, C)
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Security notions for KEMs
CCA: single-instance setting

b $← {0, 1}
par $← Par
(pk, sk) $← Gen(par)
(K∗, C∗) $← Enc(par , pk)
if b = 0: K∗ ← $

win← [b = b′]

CCA

par , pk, K∗, C∗

C
Dec(par , sk , C)

b′

A

Advantage: AdvCCA
KEM(A) = Pr[win]− 1/2
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Security notions for KEMs
n-CCA: multi-instance setting [BelRisTes12]

~b $← {0, 1}n

par $← Par
for i ∈ {1, .. , n}:

(pki , ski )
$← Gen(par)

(K∗i , C∗i ) $← Enc(par , pki )
if bi = 0: K∗i ← $

win← [
⊕n

i=1 bi = b′]

n-CCA

par , ~pk, ~K∗, ~C∗

C , i
Dec(par , ski , C)

b′

A

Advantage: Advn-CCA
KEM (A) = Pr[win]− 1/2
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Scaling factor

I how does the security of a key-encapsulation mechanism (KEM)
scale in the number of users?

I we define the scaling factor of KEM

SF(n) = MinTime(n)
MinTime(1)

I MinTime(n): running time of fastest adversary breaking
n-CCA security users with success probability 1

Lemma
1 ≤ SF(n) ≤ n
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The Scaling Behavior of
Hashed-ElGamal
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Overview on our results

I considered KEM: Hashed-ElGamal
I consider variants with different shared parameters (granularity)
I elliptic-curve setting
I bounds in generic-group model and random-oracle model

I G group of prime order p generated by g

Granularity par sk pk SFHEG(n)
high (G, p, g) x gx Θ(

√
n)

medium (G, p) (g , x) (g , gx ) Θ(
√

n)
low ⊥ ((G, p, g), x) ((G, p, g), gx ) Θ(n)
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Overview on our results

I goal: bound SFHEG(n) = MinTime(n)
MinTime(1)

I upper bound
I known generic algorithms:

MinTime(n) =
{

O(√np) high/med. granularity
O(n√p) low granularity

I known generic bound: MinTime(1) = Ω(√p)
I lower bound

I known generic algorithm: MinTime(1) = O(√p)
I this work: generic-group bounds

MinTime(n) =
{

Ω(√np) high/med. granularity
Ω(n√p) low granularity
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Generic-group lower bound on MinTimeHEG(n)
Overview

n-CCAHEG
GGM====⇒

ROM ∼ random-oracle model
n-gapCDH ∼ multi-instance gap Diffie-Hellman problem

AGM ∼ algebraic-group model [FKL18]
n-gapDL ∼ multi-instance gap discrete-logarithm problem

GGM ∼ generic-group model
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Generic-Group Lower Bounds for
Multi-Instance CDH-Type Problems
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Multi-instance CDH-type problems
Multi-instance discrete logarithm problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp
Xi ← gxi

win← [∀i : zi = xi ]

n-DL

G, ~X

~z

A

Advantage: Advn-DL(A) = Pr[win]
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Multi-instance CDH-type problems
Multi-instance gap discrete logarithm problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp
Xi ← gxi

d ←
{
1 if g x̃ ỹ = Z̃
0 else

win← [∀i : zi = xi ]

n-gapDL

G, ~X

X̃ , Ỹ , Z̃

d

~z

A

Advantage: Advn-gapDL(A) = Pr[win]
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Multi-instance CDH-type problems
Multi-instance gap computational Diffie-Hellman problem, G = (G, p, g)

for i ∈ {1, .. , n}:
xi

$← Zp; yi
$← Zp

Xi ← gxi ; Yi ← gyi

d ←
{
1 if g x̃ ỹ = Z̃
0 else

win← [∀i : Zi = gxi yi ]

n-gapCDH

G, ~X , ~Y

X̃ , Ỹ , Z̃

d

~Z

A

Advantage: Advn-gapCDH(A) = Pr[win]
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Multi-instance generic-group lower bounds
Overview

problem granularity MinTime
n-DL high Ω(√np) [Yun15]
n-DL low Ω(√np) [GDJY13]

Generic-group bounds for multi-instance Diffie-Hellman-type problems
I G of prime order p
I n instances
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Multi-instance generic-group lower bounds
Overview

problem granularity MinTime
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this work
n-gapDL high/med. Ω(√np)
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Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

low / medium granularity
derived from high granularity
result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapDL

I high granularity
I reduce n-gapDL to geometric

search problem:
search-by-hypersurface
problem (SHS2)

I prove information theoretic
bound on hardness of SHS2

I DDH-oracle requires us to
work in realm of
commutative algebra

I low / medium granularity
I derived from high granularity

result

~x

space: Zn
p; goal: find ~x

20 / 24



Intuition behind proofs
n-gapCDH

I high granularity
I show that bound for n-gapDL carries over to n-gapCDH using AGM

I low / medium granularity
I derived from high granularity result
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Summary and Future Directions

I summary
I we define the scaling factor SF, which measures the scaling of a

scheme’s security in the number of users
I we compute lower bounds on SF for variants of the Hashed-ElGamal

KEM in the generic-group model
I we prove generic lower bounds on the hardness of various

multi-instance CDH-type problems
I future directions

I revisit the KEM-DEM paradigm
I consider preprocessing

ia.cr/2019/364
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