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Slide Attacks [BW99]

◮ Adaptation of Related-Key Attacks
[B93,K92] to the case where the
key is self-related.

◮ Can be applied to ciphers with the
same keyed permutation.

◮ Independent in the number of
rounds of the cipher.
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Slide Attacks [BW99] (cont.)

◮ Slid pair satisfies
{

Q = fk(P),
D = fk(C ),

(1)

◮ Slide attacks are composed of two main steps:
◮ Find such a slid pair,
◮ Use slid pair to extract key.

◮ Actually, in many attacks the way
to verify that a given pair is
a slid pair, is to verify that
it suggested the correct key.
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Generating Slid Pairs

◮ At random (pick 2n/2 known plaintexts for n-bit block),

◮ For Feistels of different types, one can find pairs:
◮ 1K-DES — in 2n/4 chosen plaintexts [BW99],
◮ 2K-DES — in 2n/4 chosen plaintexts or 2n/4 chosen

ciphertexts [BW00],
◮ 4K-DES — in 2n/4 chosen plaintexts and ciphertexts

[BW00].
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Generating Slid Pairs — Chains [F01]

◮ Given a slid pair (P,Q), their ciphertexts (C ,D) are also
a slid pair!

◮ Actually, if (P,Q) are slid pairs, so does (E ℓ
k(P),E

ℓ
k(Q))

for any ℓ.
◮ This is useful when the attack of f (·) requires more than

a single slid pair.
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Other Extensions and Generalizations

◮ Slide detection using cycles [BDK07]

◮ Reflection attacks [K08]

◮ Slidex [DKS12]

◮ Quantum slide attacks [B+18]
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Several Applications of Slide Attacks

◮ 1K-DES, 2K-DES, 4K-DES ([BW99,BW00])

◮ 3K-DES ([B+18])

◮ 1K-AES ([B+18])

◮ Misty1 ([DK15])

◮ KeeLoq ([I+08,C+08,. . . ])

◮ FF3 ([DV17,HMT19])

Orr Dunkelman New Slide Attacks on Almost Self-Similar Ciphers 8/ 28



Intro SelfSimilar New Summary 1K-AES Problem Problem2

A Generic SPN (1K-AES)
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◮ If (P,Q) are a slid pair, then

Q = A(S(K (P))) = A(S(P ⊕ k))

which can be re-written as

P ⊕ k = S−1(A−1(Q))

◮ As S and A are unkeyed, we can easily compute
Q ′ = S−1(A−1(Q)).
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A Slide Attack on 1K-AES [B+18]

◮ Take 2n/2 known plaintexts.

◮ A slid pair (P,Q) (and corresponding ciphertext (C ,D))
satisfies:

{

Q = A(S(P ⊕ k))
D = A(S(C ))⊕ k

(2)

◮ Or in other words:

P ⊕ Q ′ = k = D ⊕ A(S(C ))

◮ Which allows immediate identification (as
P ⊕ A(S(C )) = Q ′ ⊕ D).
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The Basic Assumption of Slide Attacks

◮ All the round functions are the same,
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The Basic Assumption of Slide Attacks

◮ All the round functions are the same,
◮ It is possible to generate chains (because of the previous

assumption).
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The Basic Assumption of Slide Attacks

◮ All the round functions are the same,
◮ It is possible to generate chains (because of the previous

assumption).

Problem: in SPNs

the last round is different!
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Last Round Function ⇒ No Slid Chains
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Not All SPNs are the Same

◮ Many SPNs have a different last round,
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Not All SPNs are the Same

◮ Many SPNs have a different last round,

◮ For example, AES has no MixColumns in the last round.

◮ This complicates things even more — the relation
between the ciphertexts of the slid pair is more
complicated!
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◮ Consider 1K-AES with the last round without
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Q = ARK (MC (SR(SB(P))))
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Not All SPNs are the Same

◮ Many SPNs have a different last round,

◮ For example, AES has no MixColumns in the last round.

◮ This complicates things even more — the relation
between the ciphertexts of the slid pair is more
complicated!

◮ Consider 1K-AES with the last round without
MixColumns. Then







Q = ARK (MC (SR(SB(P))))
⇒

D = ARK (SR(SB(ARK (MC (ARK (C ))))))
(3)
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Slid Sets

◮ A slid set is composed of two λ-structures {P} and {Q}
such that

fk({P}) = {Q}
◮ In other words, we obtain 2s (s-bit S-boxes) slid pairs

from each such set.

◮ This increases the signal that can be used for detecting
slid sets!
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Slid Sets for Attacking 2K-AES

◮ Take λ-set of plaintexts {P}i (e.g., saturate the input of
S-box 0).

◮ Ask for their encryption to obtain {C}i .
◮ Construct the sets {Q}j (such that S−1(A−1({Q}j)) is a

λ-set).

◮ Ask for their encryption to obtain {D}j .
◮ Try to match the slid set ({C}i , {D}j).
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Matching the Slid Sets

◮ Apply A(S({C}i)) to obtain {C̃}i .
◮ “Swap” the order of K and A in {D}j .
◮ For a slid set

A−1{D}j = S( ˜{C}i ⊕ k))⊕ A(k).

◮ This actually “breaks” the last two rounds into several
independent S-boxes.
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Matching the Slid Sets

◮ Apply A(S({C}i)) to obtain {C̃}i .
◮ “Swap” the order of K and A in {D}j .
◮ For a slid set

A−1{D}j = S( ˜{C}i ⊕ k))⊕ A(k).

◮ This actually “breaks” the last two rounds into several
independent S-boxes.

◮ We just need to link the sets without guessing the key k.

◮ Luckily, we can count multiplicities of different values in
each S-box [DKS10].
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Hypercube of Slid Pairs

◮ Consider a slid pair (P,Q).

◮ Change the input of P to some S-box (e.g., 0).

◮ The change in the value after one round is inside an affine
space of size 2s .

◮ So, from a slid pair (P,Q), we can “generate” a second
pair (Pi ⊕ a,Qj ⊕ A(a′)).†
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Hypercube of Slid Pairs

◮ Consider a slid pair (P,Q).
◮ Change the input of P to some S-box (e.g., 0).
◮ The change in the value after one round is inside an affine

space of size 2s .
◮ So, from a slid pair (P,Q), we can “generate” a second

pair (Pi ⊕ a,Qj ⊕ A(a′)).†
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Hypercube of Slid Pairs

◮ Consider a slid pair (P,Q).

◮ Change the input of P to some S-box (e.g., 0).

◮ The change in the value after one round is inside an affine
space of size 2s .

◮ So, from a slid pair (P,Q), we can “generate” a second
pair (Pi ⊕ a,Qj ⊕ A(a′)).†

But wait!

There is more!
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Hypercube of Slid Pairs (cont.)

◮ Assume that (P,Q) is a slid a pair.
◮ Also assume that (P ⊕ a,Q ⊕ A(a′)) is a slid pair,
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Hypercube of Slid Pairs (cont.)

◮ Assume that (P,Q) is a slid a pair.
◮ Also assume that (P ⊕ a,Q ⊕ A(a′)) is a slid pair, and

that (P ⊕ b,Q ⊕ A(b′)) is a slid pair, where a and b each
“activates” a different S-box.
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Hypercube of Slid Pairs (cont.)

◮ Assume that (P,Q) is a slid a pair.
◮ Also assume that (P ⊕ a,Q ⊕ A(a′)) is a slid pair, and

that (P ⊕ b,Q ⊕ A(b′)) is a slid pair, where a and b each
“activates” a different S-box.

◮ Then also (P ⊕ a ⊕ b,Q ⊕ A(a′)⊕ A(b′)) is a slid pair.
◮ Of course, if there are more S-boxes, one can take the

base slid pair, “generate” some related slid-pairs, and then
combine all of them to form an hypercube of slid pairs.
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Attacking 1K-AES with Secret S-boxes

◮ We can use the hypercube of slid pairs to attack 1K-AES
when the S-box is unknown.

◮ For AES’ parameters (n = 128, s = 8):
◮ The attack is based on finding hypercubes of slid pairs

of dimension 5.
◮ Each such hypercube has a probability of (2−8)5 = 2−40

to indeed offer 32 slid pairs.
◮ We identify whether a hypercube is correct by observing

consistency in the ciphertexts.
◮ Once a hypercube is detected, it also offers input/output

pairs to the ARK ◦ SB layer.
◮ 45 such hypercubes are needed to fully recover the

S-box.
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Suggestive Plaintext Structures

◮ One problem many slide attacks face is the cycle: a slid
pair is found, when the key it suggests is correct.

◮ In many cases that means we need to try all possible pairs
to find the slid pair.

◮ Many variants (including the above two) bypass the
problem by finding a per-plaintext property (rather than
per-pair one).

◮ Suggestive plaintext structures approach the problem
differently.
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Suggestive Plaintext Structures (cont.)

◮ The main idea is that we associate with each plaintext P
that we test, a (partial) key candidate.

◮ Thus, when iterating over the plaintexts, we obtain
(partial) key suggestions, which can be used to determine
the slid counterpart.

◮ This implies a simple attack on 1K-AES with success rate
of 1 given 2 · 2n/2 chosen plaintexts:
◮ Pick 2n/2 plaintexts Pi such that their lower half is 0.
◮ Pick 2n/2 plaintexts Qj such that the upper half of

S−1(A−1(Qj)) is 0.
◮ We are assured that there is a slid pair (Pi ,Qj).
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Suggestive Plaintext Structures (cont.)

◮ The main idea is that we associate with each plaintext P
that we test, a (partial) key candidate.

◮ Thus, when iterating over the plaintexts, we obtain
(partial) key suggestions, which can be used to determine
the slid counterpart.

◮ This implies a simple attack on 1K-AES with success rate
of 1 given 2 · 2n/2 chosen plaintexts:
◮ Pick 2n/2 plaintexts Pi such that their lower half is 0.
◮ Pick 2n/2 plaintexts Qj such that the upper half of

S−1(A−1(Qj)) is 0.
◮ We are assured that there is a slid pair (Pi ,Qj).
◮ Moreover, the upper half of the key is equivalent to the

upper half of Pi !
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Suggestive Plaintext Structures (cont.)

◮ The main idea is that we associate with each plaintext P
that we test, a (partial) key candidate.

◮ Thus, when iterating over the plaintexts, we obtain
(partial) key suggestions, which can be used to determine
the slid counterpart.

◮ This implies a simple attack on 1K-AES with success rate
of 1 given 2 · 2n/2 chosen plaintexts:
◮ Pick 2n/2 plaintexts Pi such that their lower half is 0.
◮ Pick 2n/2 plaintexts Qj such that the upper half of

S−1(A−1(Qj)) is 0.
◮ We are assured that there is a slid pair (Pi ,Qj).
◮ Moreover, the upper half of the key is equivalent to the

upper half of Pi !
◮ The 1K-AES attack is similar to the one of [B+18] with

the addition of “splice and cut”.
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Attacking 1K-AES with Incomplete Diffusion in the

Last Round

◮ Consider 1K-AES where the last round lacks MixColumns.

◮ Pick two Qj ’s structures (one fixed to 0, and one fixed to
1).

◮ Each Pi suggests:
◮ Upper half of the key,
◮ A friend Ri = Pi ⊕ (0, 0, 0, 1) which also has a slid pair

(in the second ciphertext structure). Denote its
corresponding ciphertext by Fi .

◮ If Pi is the correct plaintext, we can partially decrypt Ci

and Fi to obtain the difference of the upper half of the
ciphertexts from the two Qj structures.
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Substitution Slide Attack

◮ Can be used to attack 1K-AES with a completely
different last round diffusion, i.e., A′.

◮ Moreover, the resulting attack requires 2n/2 known
plaintexts!

◮ So we need to identify the slid pair, without trying all

pairs.
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Substitution Slide Attack (Cont.)

◮ Consider the equations for a slid pair (Pi ,Pj):

Pj = A(S(K (Pi))) ⇒ Pj = A(S(Pi ⊕ k)) ⇒
k = Pi ⊕ S−1(A−1(Pj))

Cj = K (A′(S(K (A(A′−1(K (Ci))))))) ⇒
S−1(A′−1(Cj ⊕ K )) = K (A(A′−1(K (Ci))))

◮ This allows through a series of substitutions to obtain

S−1(A′−1(K (Cj)))⊕ A(A′−1(S−1(A−1(Pj)))⊕ S−1(A−1(Pj)) =
A(A′−1((Pi))⊕ Pi ⊕ A(A′−1(Ci)).
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Substitution Slide Attack (Cont.)

◮ The attack is thus composed of the following steps:
◮ Evaluate A(A′−1((Pi ))⊕ Pi ⊕ A(A′−1(Ci )) for all

plaintexts.
◮ Guess n/4 bits of the key:

◮ For all Pi ’s:
◮ Among the 2n/4 candidate Pj ’s, check the substituted

condition.
◮ Of course, this is done efficiently using hash tables. . .

◮ Once a suggestion is made, test the proposed
k = Pi ⊕ S−1(A−1(Pj))
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Summary

◮ Introduced 4 new slide techniques:
◮ Slid Sets
◮ Hypercube of slid pairs
◮ Suggestive plaintext structures
◮ Substitution slide

◮ While these techniques are useful for SPNs, they can be
widely used for other schemes.

Orr Dunkelman New Slide Attacks on Almost Self-Similar Ciphers 26/ 28



Intro SelfSimilar New Summary

Results

Cipher Technique Complexity (general) AES-like
Data/Memory Time Data/Memory Time

Known S-Boxes

1-KSAf Slide [B+18] 2n/2 (KP) 2n/2 264 (KP) 264

1-KSAt Suggestive str. 3 · 2n/2 (CP) 4 · 2n/2 265.6 (CP) 266

1-KSAt Sub. slide 2n/2 (KP) 23n/4 264 (KP) 296

2-KSAf Slid sets 2(n+s)/2+1 (CP) 2(n+s)/2+1 269 (CP) 269

2-KSAf Slide + Key Guessing (n/s)2n/2 (CP) 2n/2+s 268 (CP) 272

2-KSAf Slide + Pt/Ct Coll. See full version for details 282‡ (CP) 282

2-KSAtpi † Slid sets 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 278 (CP) 278

3-KSAfi † Slid sets 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 281 (CP) 281

Secret S-Boxes

1-KSAf Slid sets 1.17
√
s2(n+s)/2 (CP) 1.17

√
s2(n+s)/2 270.3 (CP) 270.3

1-KSAf Hypercube
√
s2n/2+s(s+3)/4+1 (CP)

√
s2n/2+s(s+3)/4+1 288 (CP) 288

KP – Known Plaintext; CP – Chosen Plaintext; For AES-like n = 128, s = 8
† – this version has incomplete diffusion layer, m denotes the “word” size of the linear operation.
‡ – memory complexity of this attack is 247.
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Thank you for your Attention!

Full version:

https://eprint.iacr.org/2019/509
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