New Slide Attacks on Almost Self-Similar Ciphers

<u>Orr Dunkelman</u>, Nathan Keller, Noam Lasry, Adi Shamir

Eurocrypt 2020

	SelfSimilar	New	Summary	
A 11				
Outline				

- Slide Attacks
- Generating Slid Pairs
- Several Applications of Slide Attacks
- 2 Attacking Self-Similar SPNs
 - Attacking 1K-AES
 - The Problem of Sliding an SPN
 - The Problem of Sliding AES (and others)
- 3 New Techniques for Slide Attacks
 - Slid Sets
 - Hypercube of Slid Pairs
 - Suggestive Plaintext Structures
 - Substitution Slide Attack
- 4 Summary and Conclusions

SelfSimilar

Intro

 Adaptation of Related-Key Attacks [B93,K92] to the case where the key is self-related.

New

- Can be applied to ciphers with the same keyed permutation.
- Independent in the number of rounds of the cipher.

Slide

Slide Attacks [BW99] (cont.)

New

Slid pair satisfies

SelfSimilar

Intro

$$\begin{cases} Q = f_k(P), \\ D = f_k(C), \end{cases}$$
(1)

Slide

Slide attacks are composed of two main steps:

Summarv

- Find such a slid pair,
- Use slid pair to extract key.
- Actually, in many attacks the way to verify that a given pair is a slid pair, is to verify that it suggested the correct key.

 Intro
 SelfSimilar
 New
 Summary
 Slide
 Pairs
 Applications

 Generating Slid Pairs
 Slide
 Pairs
 Applications
 Slide
 Pairs
 Applications

- At random (pick $2^{n/2}$ known plaintexts for *n*-bit block),
- ► For Feistels of different types, one can find pairs:
 - ▶ 1K-DES in 2^{n/4} chosen plaintexts [BW99],
 - 2K-DES in 2^{n/4} chosen plaintexts or 2^{n/4} chosen ciphertexts [BW00],
 - 4K-DES in 2^{n/4} chosen plaintexts and ciphertexts [BW00].

Generating Slid Pairs — Chains [F01]

Summarv

New

SelfSimilar

Intro

- Given a slid pair (P, Q), their ciphertexts (C, D) are also a slid pair!
- Actually, if (P, Q) are slid pairs, so does (E^ℓ_k(P), E^ℓ_k(Q)) for any ℓ.
- ► This is useful when the attack of f(·) requires more than a single slid pair.

Pairs

Other Extensions and Generalizations

- Slide detection using cycles [BDK07]
- Reflection attacks [K08]
- Slidex [DKS12]
- Quantum slide attacks [B+18]

Several Applications of Slide Attacks

New

- 1K-DES, 2K-DES, 4K-DES ([BW99,BW00])
- ▶ 3K-DES ([B+18])

SelfSimilar

Intro

- ▶ 1K-AES ([B+18])
- Misty1 ([DK15])
- ▶ KeeLoq ([I+08,C+08,...])
- FF3 ([DV17,HMT19])

Applications

Intro SelfSimilar New Summary

1K-AES

Problem

Problem2

A Generic SPN (1K-AES)

$$P \xrightarrow{K} [K]{K} = S \xrightarrow{K} [K]{K$$

which can be re-written as

$$P\oplus k=S^{-1}(A^{-1}(Q))$$

As S and A are unkeyed, we can easily compute $Q' = S^{-1}(A^{-1}(Q)).$

A Slide Attack on 1K-AES [B+18]

- Take $2^{n/2}$ known plaintexts.
- A slid pair (P, Q) (and corresponding ciphertext (C, D)) satisfies:

$$\begin{cases} Q = A(S(P \oplus k)) \\ D = A(S(C)) \oplus k \end{cases}$$
(2)

Or in other words:

$$P \oplus Q' = k = D \oplus A(S(C))$$

• Which allows immediate identification (as $P \oplus A(S(C)) = Q' \oplus D$).

► All the round functions are the same,

Intro SelfSimilar New Summary 1K-AES Problem Problem2

- The Basic Assumption of Slide Attacks
 - All the round functions are the same,
 - It is possible to generate chains (because of the previous assumption).

 Intro
 SelfSimilar
 New
 Summary
 IK-AES
 Problem
 Problem2

 The Basic Assumption of Slide Attacks

- All the round functions are the same,
- It is possible to generate chains (because of the previous assumption).

Problem: in SPNs

the last round is different!

Intro

Last Round Function \Rightarrow No Slid Chains

Many SPNs have a different last round,

Not All SPNs are the Same

New

SelfSimilar

Many SPNs have a different last round,

Summarv

- For example, AES has no MixColumns in the last round.
- This complicates things even more the relation between the ciphertexts of the slid pair is more complicated!

Problem2

Not All SPNs are the Same

New

SelfSimilar

Many SPNs have a different last round,

Summarv

► For example, AES has no MixColumns in the last round.

Problem2

- This complicates things even more the relation between the ciphertexts of the slid pair is more complicated!
- Consider 1K-AES with the last round without MixColumns. Then

$$\begin{cases} Q = ARK(MC(SR(SB(P)))) \end{cases}$$

Not All SPNs are the Same

New

SelfSimilar

Many SPNs have a different last round,

Summarv

- For example, AES has no MixColumns in the last round.
- This complicates things even more the relation between the ciphertexts of the slid pair is more complicated!
- Consider 1K-AES with the last round without MixColumns. Then

$$\begin{cases} Q = ARK(MC(SR(SB(P)))) \\ \Rightarrow \\ D = ARK(SR(SB(ARK(MC(ARK(C)))))) \end{cases}$$
(3)

Problem2

A slid set is composed of two λ-structures {P} and {Q} such that

$$f_k(\{\mathcal{P}\}) = \{\mathcal{Q}\}$$

- In other words, we obtain 2^s (s-bit S-boxes) slid pairs from each such set.
- This increases the signal that can be used for detecting slid sets!

Slid Sets for Attacking 2K-AES

New

SelfSimilar

Take λ-set of plaintexts {P}_i (e.g., saturate the input of S-box 0).

SlidSets

• Ask for their encryption to obtain $\{C\}_i$.

Summarv

- Construct the sets {Q}_j (such that S⁻¹(A⁻¹({Q}_j)) is a λ-set).
- Ask for their encryption to obtain $\{\mathcal{D}\}_j$.
- Try to match the slid set $({\mathcal{C}}_i, {\mathcal{D}}_j)$.

- Apply $A(S({\mathcal{C}}_i))$ to obtain ${\{\tilde{\mathcal{C}}\}_i}$.
- "Swap" the order of K and A in $\{\mathcal{D}\}_j$.
- For a slid set

$$A^{-1}{\mathcal{D}}_j = S({\{\tilde{\mathcal{C}}\}}_i \oplus k)) \oplus A(k).$$

 This actually "breaks" the last two rounds into several independent S-boxes.

- Apply $A(S({\mathcal{C}}_i))$ to obtain $\{\tilde{\mathcal{C}}\}_i$.
- "Swap" the order of K and A in $\{\mathcal{D}\}_j$.
- For a slid set

$$A^{-1}{\mathcal{D}}_j = S({\{\tilde{\mathcal{C}}\}}_i \oplus k)) \oplus A(k).$$

- This actually "breaks" the last two rounds into several independent S-boxes.
- ▶ We just need to link the sets without guessing the key *k*.
- Luckily, we can count multiplicities of different values in each S-box [DKS10].

SelfSimilar

► Consider a slid pair (P, Q).

New

Change the input of P to some S-box (e.g., 0).

Summarv

The change in the value after one round is inside an affine space of size 2^s.

Hypercube

So, from a slid pair (P, Q), we can "generate" a second pair (P_i ⊕ a, Q_j ⊕ A(a')).[†] Hypercube of Slid Pairs

SelfSimilar

• Consider a slid pair (P, Q).

New

Change the input of P to some S-box (e.g., 0).

Summarv

The change in the value after one round is inside an affine space of size 2^s.

Hypercube

So, from a slid pair (P, Q), we can "generate" a second pair (P_i ⊕ a, Q_j ⊕ A(a')).[†]

Hypercube of Slid Pairs

SelfSimilar

► Consider a slid pair (P, Q).

New

Change the input of P to some S-box (e.g., 0).

Summarv

The change in the value after one round is inside an affine space of size 2^s.

Hypercube

So, from a slid pair (P, Q), we can "generate" a second pair (P_i ⊕ a, Q_j ⊕ A(a')).[†]

But wait!

There is more!

Intro SelfSimilar New Summary SlidSets Hypercube Suggestive Substitution Hypercube of Slid Pairs (cont.)

- Assume that (P, Q) is a slid a pair.
- Also assume that $(P \oplus a, Q \oplus A(a'))$ is a slid pair,

IntroSelfSimilarNewSummarySlidSetsHypercubeSuggestiveSubstitutionHypercube of Slid Pairs (cont.)

- Assume that (P, Q) is a slid a pair.
- Also assume that $(P \oplus a, Q \oplus A(a'))$ is a slid pair, and that $(P \oplus b, Q \oplus A(b'))$ is a slid pair, where a and b each "activates" a different S-box.

Hypercube of Slid Pairs (cont.)

New

SelfSimilar

• Assume that (P, Q) is a slid a pair.

Summarv

Also assume that (P ⊕ a, Q ⊕ A(a')) is a slid pair, and that (P ⊕ b, Q ⊕ A(b')) is a slid pair, where a and b each "activates" a different S-box.

Hypercube

- ▶ Then also $(P \oplus a \oplus b, Q \oplus A(a') \oplus A(b'))$ is a slid pair.
- Of course, if there are more S-boxes, one can take the base slid pair, "generate" some related slid-pairs, and then combine all of them to form an *hypercube* of slid pairs.

Intro SelfSimilar New Summary SlidSets Hypercube Suggestive Substitution

Attacking 1K-AES with Secret S-boxes

- We can use the hypercube of slid pairs to attack 1K-AES when the S-box is unknown.
- For AES' parameters (n = 128, s = 8):
 - The attack is based on finding hypercubes of slid pairs of dimension 5.
 - Each such hypercube has a probability of $(2^{-8})^5 = 2^{-40}$ to indeed offer 32 slid pairs.
 - We identify whether a hypercube is correct by observing consistency in the ciphertexts.

 - 45 such hypercubes are needed to fully recover the S-box.

Suggestive Plaintext Structures

New

Summarv

SelfSimilar

- One problem many slide attacks face is the cycle: a slid pair is found, when the key it suggests is correct.
- In many cases that means we need to try all possible pairs to find the slid pair.
- Many variants (including the above two) bypass the problem by finding a per-plaintext property (rather than per-pair one).
- Suggestive plaintext structures approach the problem differently.

Suggestive Plaintext Structures (cont.)

Summarv

New

SelfSimilar

- The main idea is that we associate with each plaintext P that we test, a (partial) key candidate.
- Thus, when iterating over the plaintexts, we obtain (partial) key suggestions, which can be used to determine the slid counterpart.
- This implies a simple attack on 1K-AES with success rate of 1 given 2 · 2^{n/2} chosen plaintexts:
 - Pick $2^{n/2}$ plaintexts P_i such that their lower half is 0.
 - Pick 2^{n/2} plaintexts Q_j such that the upper half of S⁻¹(A⁻¹(Q_j)) is 0.
- We are assured that there is a slid pair (P_i, Q_j) .

Suggestive Plaintext Structures (cont.)

Summarv

New

SelfSimilar

- The main idea is that we associate with each plaintext P that we test, a (partial) key candidate.
- Thus, when iterating over the plaintexts, we obtain (partial) key suggestions, which can be used to determine the slid counterpart.
- This implies a simple attack on 1K-AES with success rate of 1 given 2 · 2^{n/2} chosen plaintexts:
 - Pick $2^{n/2}$ plaintexts P_i such that their lower half is 0.
 - Pick 2^{n/2} plaintexts Q_j such that the upper half of S⁻¹(A⁻¹(Q_j)) is 0.
- We are assured that there is a slid pair (P_i, Q_j) .
- Moreover, the upper half of the key is equivalent to the upper half of P_i!

Suggestive Plaintext Structures (cont.)

Summarv

New

SelfSimilar

- The main idea is that we associate with each plaintext P that we test, a (partial) key candidate.
- Thus, when iterating over the plaintexts, we obtain (partial) key suggestions, which can be used to determine the slid counterpart.
- This implies a simple attack on 1K-AES with success rate of 1 given 2 · 2^{n/2} chosen plaintexts:
 - Pick $2^{n/2}$ plaintexts P_i such that their lower half is 0.
 - Pick 2^{n/2} plaintexts Q_j such that the upper half of S⁻¹(A⁻¹(Q_j)) is 0.
- We are assured that there is a slid pair (P_i, Q_j) .
- Moreover, the upper half of the key is equivalent to the upper half of P_i!
- The 1K-AES attack is similar to the one of [B+18] with the addition of "splice and cut".

Orr Dunkelman

New Slide Attacks on Almost Self-Similar Ciphers

- Consider 1K-AES where the last round lacks MixColumns.
- Pick two Q_j's structures (one fixed to 0, and one fixed to 1).
- Each P_i suggests:
 - Upper half of the key,
 - A friend R_i = P_i ⊕ (0,0,0,1) which also has a slid pair (in the second ciphertext structure). Denote its corresponding ciphertext by F_i.
- If P_i is the correct plaintext, we can partially decrypt C_i and F_i to obtain the difference of the upper half of the ciphertexts from the two Q_j structures.

Substitution Slide Attack

New

SelfSimilar

- Can be used to attack 1K-AES with a completely different last round diffusion, i.e., A'.
- Moreover, the resulting attack requires 2^{n/2} known plaintexts!
- So we need to identify the slid pair, without trying all pairs.

Substitution

Substitution Slide Attack (Cont.)

New

SelfSimilar

• Consider the equations for a slid pair (P_i, P_j) :

$$P_{j} = A(S(K(P_{i}))) \Rightarrow P_{j} = A(S(P_{i} \oplus k)) \Rightarrow$$

$$k = P_{i} \oplus S^{-1}(A^{-1}(P_{j}))$$

$$C_{j} = K(A'(S(K(A(A'^{-1}(K(C_{i})))))) \Rightarrow$$

$$S^{-1}(A' - 1(C_{j} \oplus K)) = K(A(A'^{-1}(K(C_{i}))))$$

This allows through a series of substitutions to obtain

$$S^{-1}(A'^{-1}(K(C_j))) \oplus A(A'^{-1}(S^{-1}(A^{-1}(P_j))) \oplus S^{-1}(A^{-1}(P_j)) = A(A'^{-1}((P_i)) \oplus P_i \oplus A(A'^{-1}(C_i)).$$

Substitution

Substitution Slide Attack (Cont.)

New

SelfSimilar

The attack is thus composed of the following steps:

Summarv

- ► Evaluate A(A'⁻¹((P_i)) ⊕ P_i ⊕ A(A'⁻¹(C_i)) for all plaintexts.
- ▶ Guess *n*/4 bits of the key:
 - For all P_i's:
 - Among the 2^{n/4} candidate P_j's, check the substituted condition.
 - Of course, this is done efficiently using hash tables...
- Once a suggestion is made, test the proposed k = P_i ⊕ S⁻¹(A⁻¹(P_j))

Substitution

Intro SelfSimilar New Summary
Summary

- Introduced 4 new slide techniques:
 - Slid Sets
 - Hypercube of slid pairs
 - Suggestive plaintext structures
 - Substitution slide
- While these techniques are useful for SPNs, they can be widely used for other schemes.

Results

Cipher	Technique	Complexity (general)		AES-like					
		Data/Memory	Time	Data/Memory	Time				
Known S-Boxes									
1-KSAf	Slide [B+18]	2 ^{n/2} (KP)	2 ^{n/2}	2 ⁶⁴ (KP)	2 ⁶⁴				
1-KSAt	Suggestive str.	$3 \cdot 2^{n/2}$ (CP)	$4 \cdot 2^{n/2}$	2 ^{65.6} (CP)	2 ⁶⁶				
1-KSAt	Sub. slide	2 ^{n/2} (KP)	2 ^{3n/4}	2 ⁶⁴ (KP)	2 ⁹⁶				
2-KSAf	Slid sets	$2^{(n+s)/2+1}$ (CP)	$2^{(n+s)/2+1}$	2 ⁶⁹ (CP)	2 ⁶⁹				
2-KSAf	Slide + Key Guessing	$(n/s)2^{n/2}$ (CP)	$2^{n/2+s}$	2 ⁶⁸ (CP)	272				
2-KSAf	Slide + Pt/Ct Coll.	See full version for details		2 ^{82‡} (CP)	2 ⁸²				
2-KSAtpi †	Slid sets	$2^{(n+m)/2+1}$ (CP)	$\max\{2^{(n+m)/2+1}, 2^{2m}\}$	2 ⁷⁸ (CP)	2 ⁷⁸				
3-KSAfi †	Slid sets	$2^{(n+m)/2+1}$ (CP)	$\max\{2^{(n+m)/2+1}, 2^{2m}\}$	2 ⁸¹ (CP)	2 ⁸¹				
Secret S-Boxes									
1-KSAf	Slid sets	$1.17\sqrt{s}2^{(n+s)/2}$ (CP)	$1.17\sqrt{s}2^{(n+s)/2}$	2 ^{70.3} (CP)	2 ^{70.3}				
1-KSAf	Hypercube	$\sqrt{s}2^{n/2+s(s+3)/4+1}$ (CP)	$\sqrt{s}2^{n/2+s(s+3)/4+1}$	2 ⁸⁸ (CP)	288				

KP – Known Plaintext; CP – Chosen Plaintext; For AES-like n = 128, s = 8

 † – this version has incomplete diffusion layer, *m* denotes the "word" size of the linear operation.

 \pm – memory complexity of this attack is 2^{47} .

Thank you for your Attention!

New

Summarv

SelfSimilar

Full version:

https://eprint.iacr.org/2019/509

