Efficient Simulation of Random States and Random Unitaries

Gorjan Alagic, Christian Majenz and Alexander Russell

Eurocrypt 2020, in Cyberspace

Results — overview

- We study the **simulation of random quantum objects**, i.e. random states and random unitary operations
- We develop a **theory of** their **stateful simulation**, a quantum analogue of Lazy sampling
- For random states, we develop an efficient protocol for stateful simulation
- For random unitaries, we devise a simulation method that runs in polynomial space
- As an **application**, we design a **quantum money** scheme that is unconditionally unforgeable and untraceable.

Introduction

Randomness...

- ... is extremely useful. Applications:
- All of cryptography
- Monte Carlo simulation
- Randomized algorithms
- • •

Easy example: random string

Random element $x \in_R \{0,1\}^n$

Easy example: random string

Random element $x \in_{R} \{0,1\}^{n}$

	Randomness cost	Runtime limit distinguisher
Exact	п	No

Easy example: random string

Random element $x \in_R \{0,1\}^n$

	Randomness cost	Runtime limit distinguisher
Exact	n	No
Pseudorandom generator	poly(λ)	poly(λ)

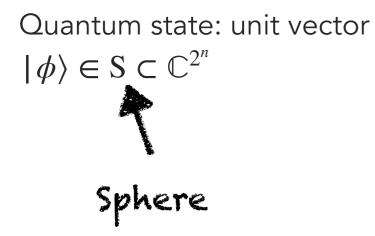
Oracle simulation for <i>f</i>	Randomness cost	Stateful simulation	Runtime limit distinguisher	Query limit distinguisher
Exact	$n \cdot 2^m$	No	None	None

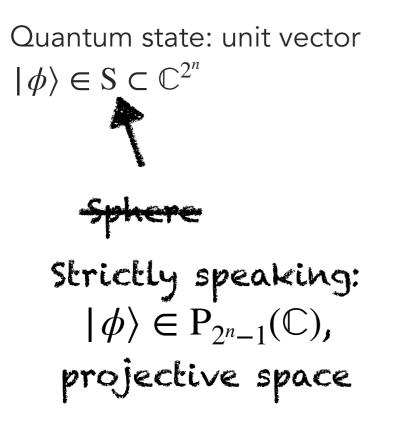
Fun	ction $f: \{0,1\}^m$ -	$\rightarrow \{0,1\}^n$ such that	at $f(x) \in_R \{0,1\}^n$	independently	<pre>s runl</pre>	*
				and the second design of the s	mem	ory
	Oracle simulation for <i>f</i>	Randomness cost	Stateful simulation	Runtime limit distinguisher	Query limit distinguisher	
	Exact	$n \cdot 2^m$	No	None	None	

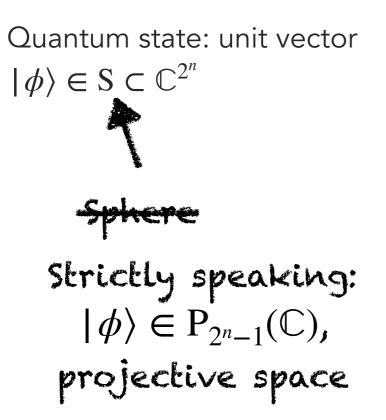
Oracle simulation for <i>f</i>	Randomness cost	Stateful simulation	Runtime limit distinguisher	Query limit distinguisher
Exact	$n \cdot 2^m$	No	None	None
<i>t</i> -wise independent function	$O(t \cdot n)$	No	None	t

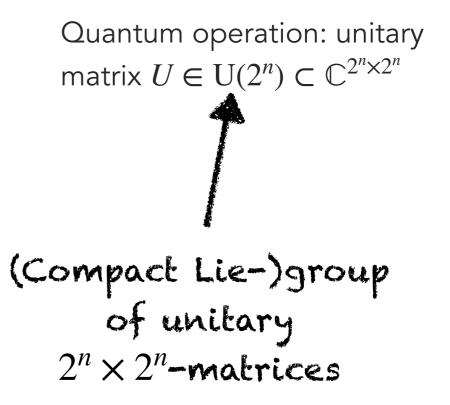
Oracle simulation for <i>f</i>	Randomness cost	Stateful simulation	Runtime limit distinguisher	Query limit distinguisher
Exact	$n \cdot 2^m$	No	None	None
<i>t</i> -wise independent function	$O(t \cdot n)$	No	None	t
Pseudorandom function	$poly(\lambda)$	No	$poly(\lambda)$	None

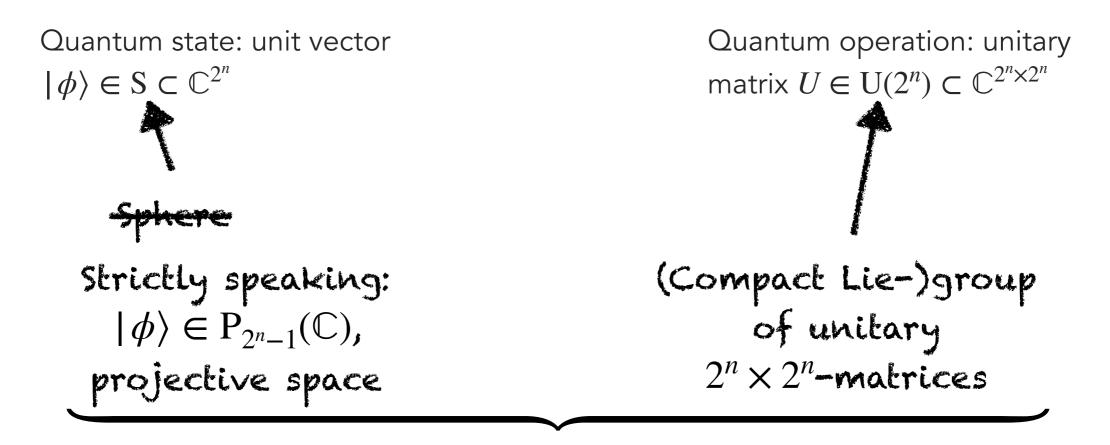
Oracle simulation for <i>f</i>	Randomness cost	Stateful simulation	Runtime limit distinguisher	Query limit distinguisher
Exact	$n \cdot 2^m$	No	None	None
<i>t</i> -wise independent function	$O(t \cdot n)$	No	None	t
Pseudorandom function	$poly(\lambda)$	No	$poly(\lambda)$	None
"Lazy sampling"	$q \cdot n$	Yes	None	None
	# of a	ueries		



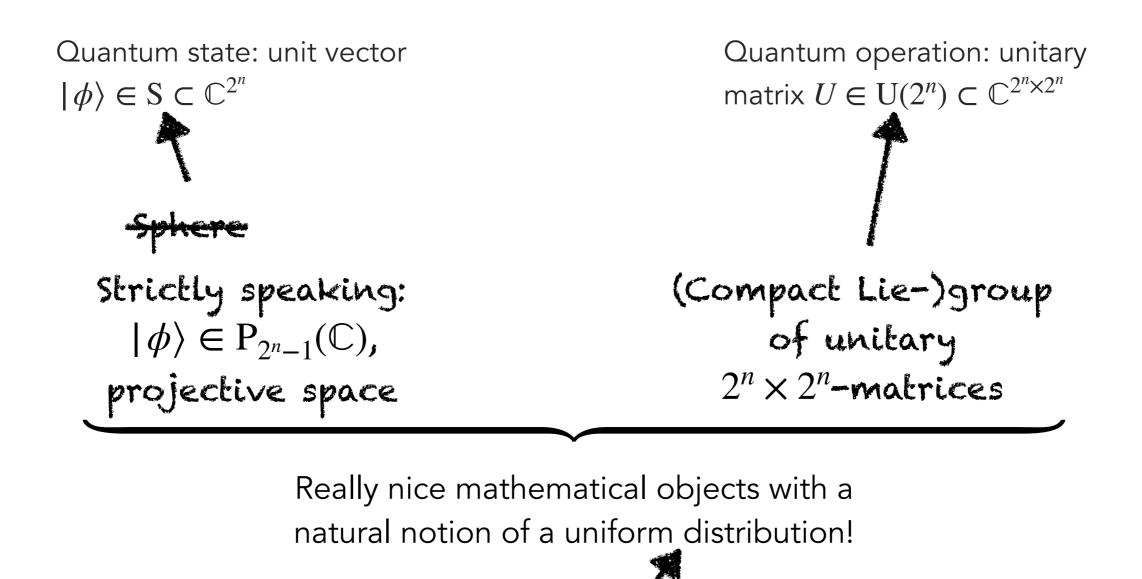








Really nice mathematical objects with a natural notion of a uniform distribution!



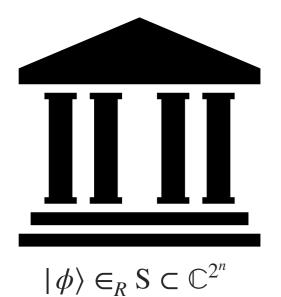
Haar measure

No-cloning principle: quantum information cannot be copied.

No-cloning principle: quantum information cannot be copied. Oldest idea in quantum crypto: Let's make money out of it!

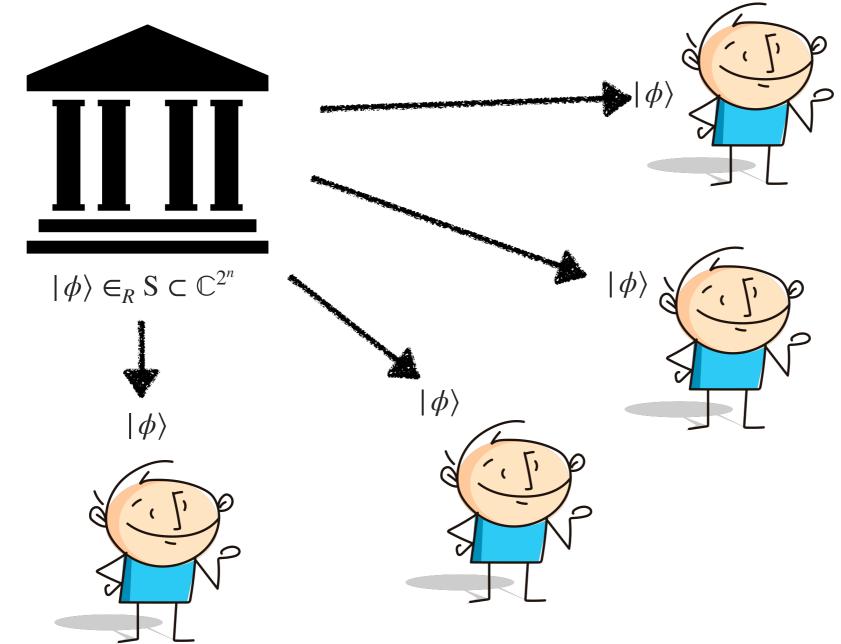
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



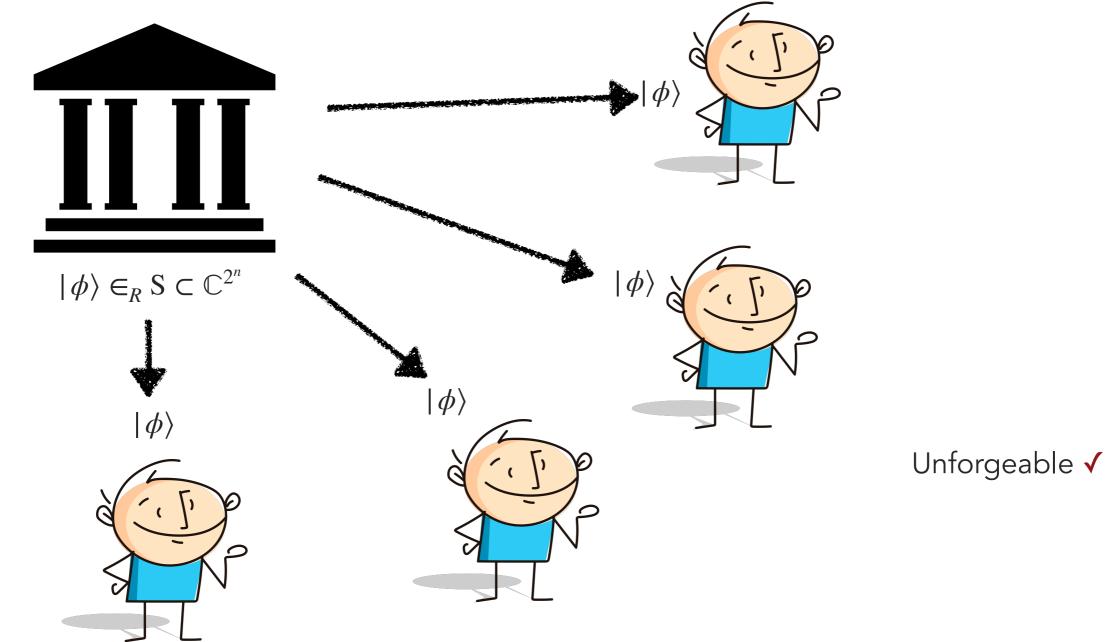
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



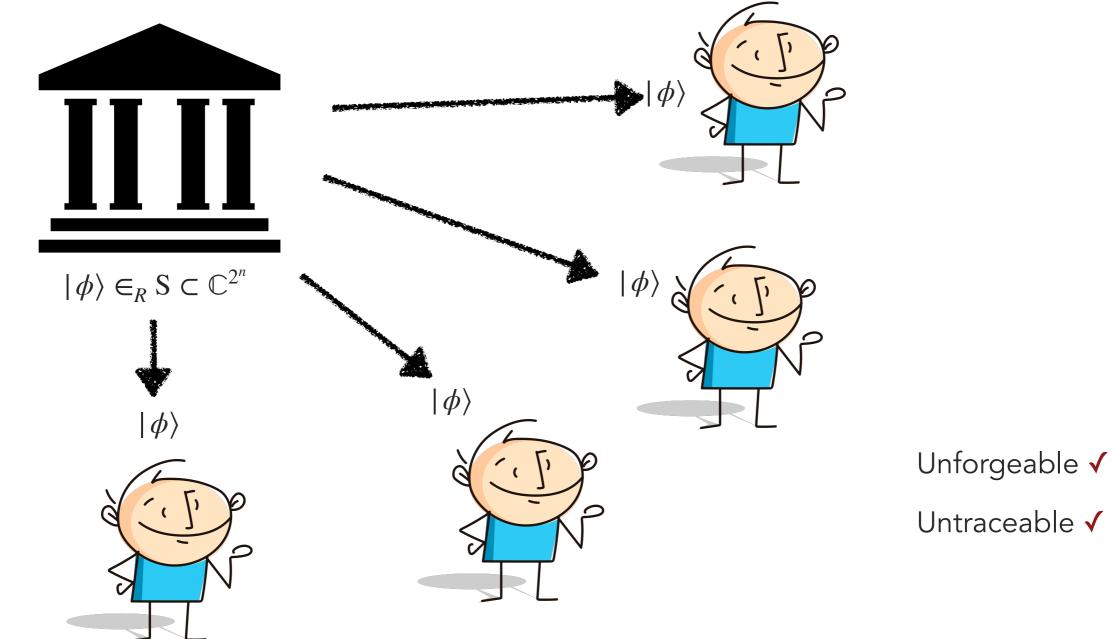
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



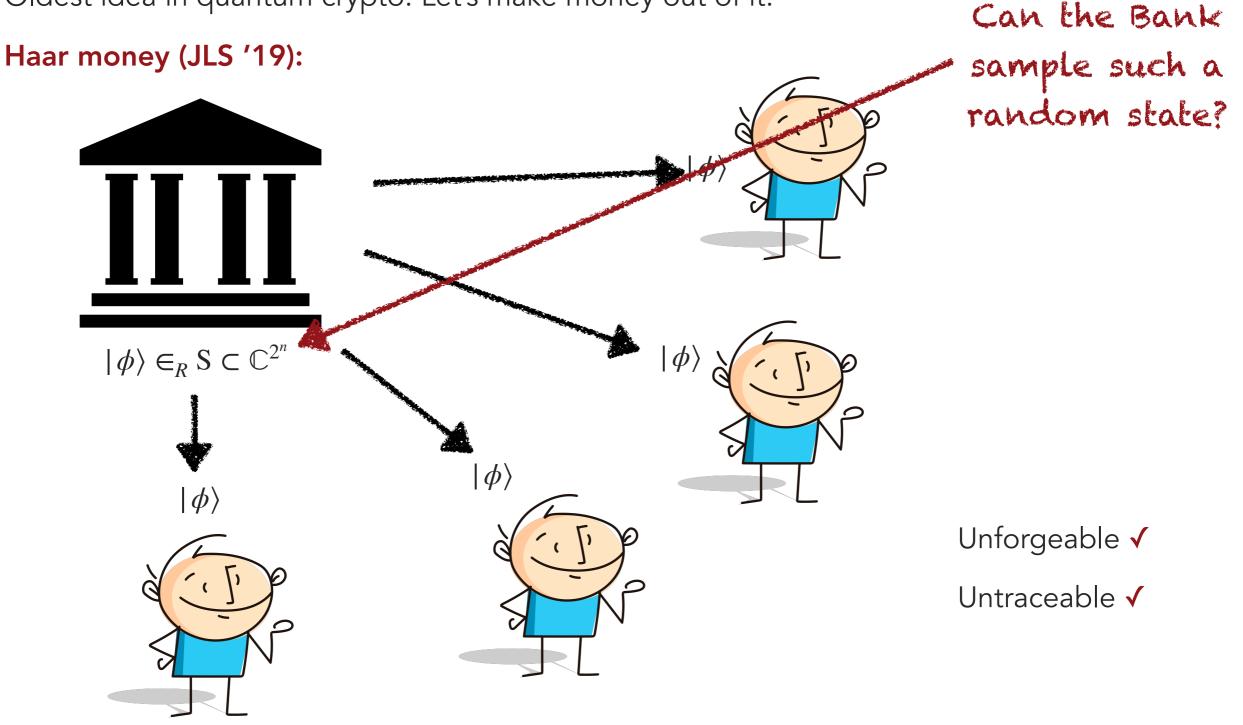
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



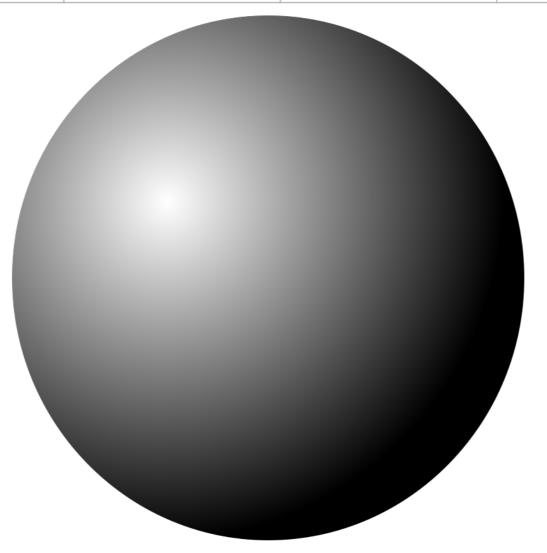
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

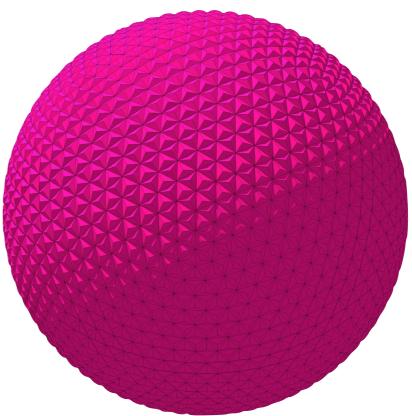


Simulation of random quantum objects

Oracle simulation for $1 \mapsto \phi\rangle$	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None



Oracle simulation for $1 \mapsto \phi\rangle$	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>€</i> -Net	$O(\log(1/\varepsilon) \cdot 2^n)$	inefficient, stateless	None	$O\left(1/\varepsilon\right)$



Oracle simulation for $1 \mapsto \phi\rangle$	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>E</i> -Net	$O(\log(1/\varepsilon) \cdot 2^n)$	inefficient, stateless	None	$O(1/\varepsilon)$
State <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t

Oracle simulation for $1 \mapsto \phi\rangle$	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
${oldsymbol {\mathcal E}}$ -Net	$O(\log(1/\varepsilon)\cdot 2^n)$	inefficient, stateless	None	$O(1/\varepsilon)$
State <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t
Pseudorandom quantum state (JLS '19, BS '20)	$poly(\lambda)$	efficient, stateless	$poly(\lambda)$	None

This work: quantum "lazy sampling"	poly(q,n)	efficient, stateful	None	None
Pseudorandom quantum state (JLS '19, BS '20)	$poly(\lambda)$	efficient, stateless	$poly(\lambda)$	None
State <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t
<i>E</i> -Net	$O(\log(1/\varepsilon) \cdot 2^n)$	inefficient, stateless	None	$O(1/\varepsilon)$
Exact		inefficient, stateless	None	None
Oracle simulation for $1 \mapsto \phi\rangle$	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher

Can we simulate a random unitary?

Haar-random unitary $U \in U(2^n)$

Can we simulate a random unitary?

Haar-random unitary $U \in U(2^n)$

Oracle simulation for U	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>€</i> -Net	$O(\log{(1/\varepsilon)} \cdot 2^{2n})$	inefficient, stateless	None	$O(1/\varepsilon)$

Can we simulate a random unitary?

Haar-random unitary $U \in U(2^n)$

Oracle simulation for U	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>E</i> -Net	$O(\log{(1/\varepsilon)} \cdot 2^{2n})$	inefficient, stateless	None	$O(1/\varepsilon)$
Unitary <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t

Can we simulate a random unitary?

Haar-random unitary $U \in U(2^n)$

Oracle simulation for U	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>E</i> -Net	$O(\log{(1/\varepsilon)} \cdot 2^{2n})$	inefficient, stateless	None	$O\left(1/\varepsilon\right)$
Unitary <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t
Pseudorandom unitary??? (JLS '19)	$poly(\lambda)$	efficient, stateless	$poly(\lambda)$	None

Can we simulate a random unitary?

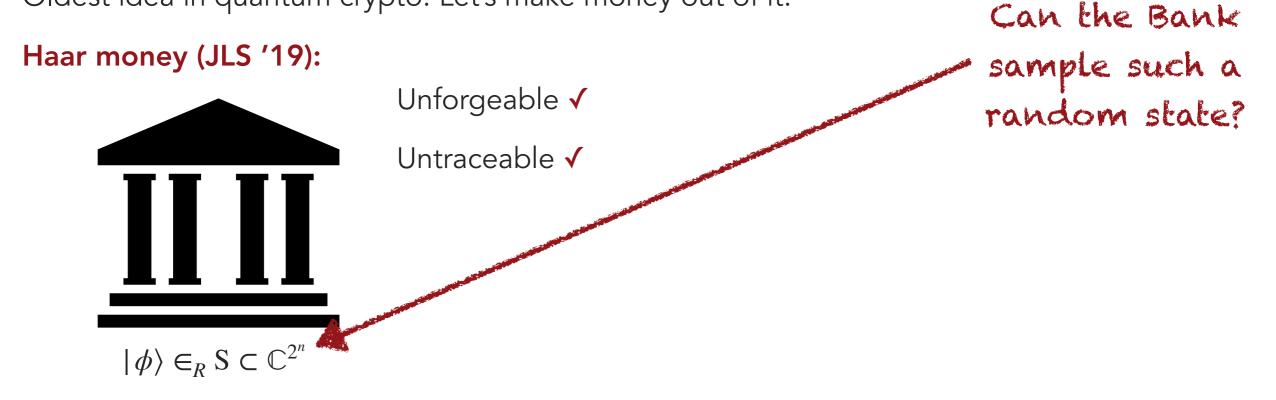
Haar-random unitary $U \in U(2^n)$

Oracle simulation for U	Randomness/ Memory cost	Simulation	Runtime limit distinguisher	Query limit distinguisher
Exact		inefficient, stateless	None	None
<i>E</i> -Net	$O(\log{(1/\varepsilon)} \cdot 2^{2n})$	inefficient, stateless	None	$O\left(1/\varepsilon\right)$
Unitary <i>t</i> -design	poly(<i>n</i> , <i>t</i>)	efficient, stateless	None	t
Pseudorandom unitary??? (JLS '19)	$poly(\lambda)$	efficient, stateless	$poly(\lambda)$	None
This work	poly(q, n)	space- efficient, stateful	None	None

of queries

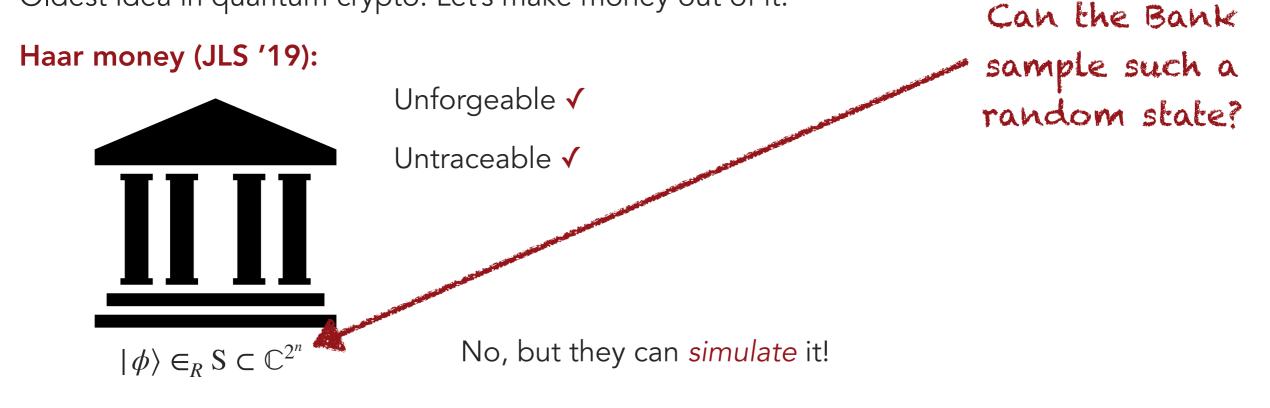
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



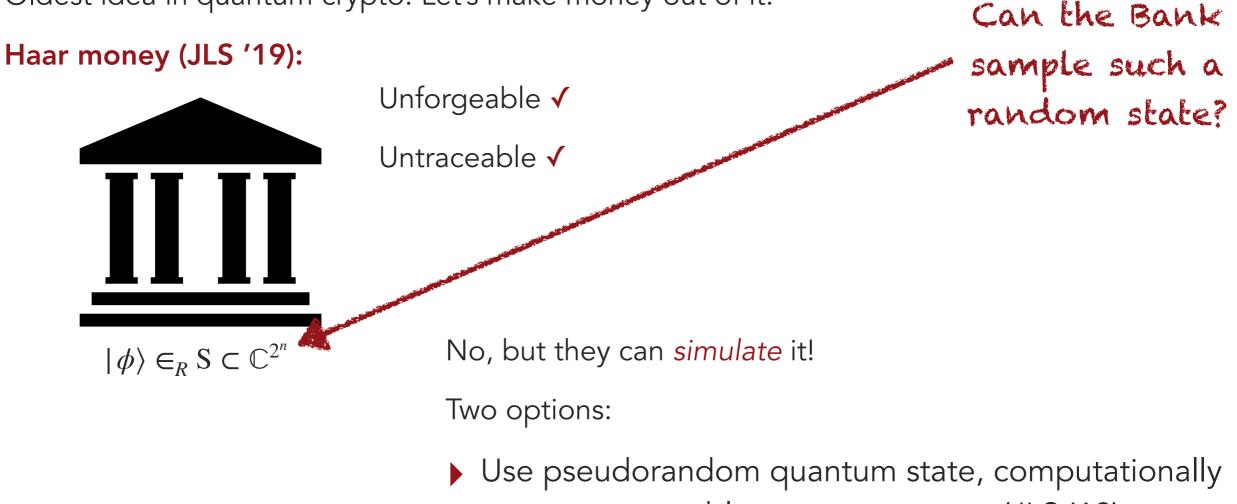
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



No-cloning principle: quantum information cannot be copied.

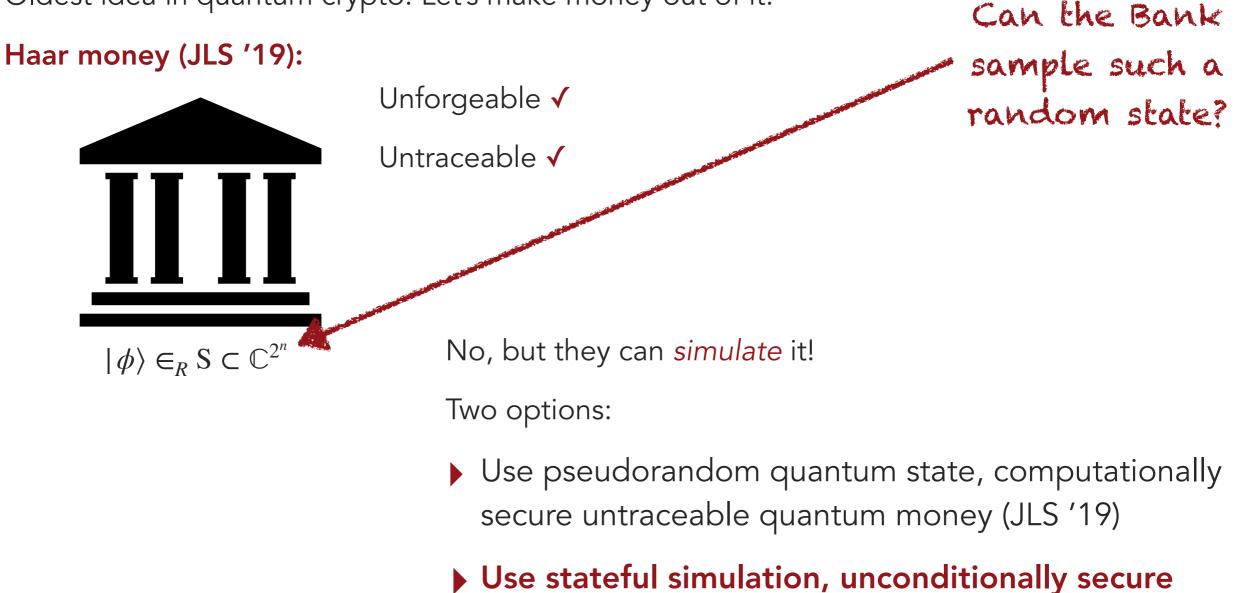
Oldest idea in quantum crypto: Let's make money out of it!



secure untraceable quantum money (JLS '19)

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



untraceable quantum money (AMR)

Stateless simulation scheme $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K'}$ pick $k \in_R K$, output copies of $| \phi_k \rangle$

Stateless simulation scheme $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K'}$ pick $k \in_R K$, output copies of $| \phi_k \rangle$

Problem:

 $|\phi\rangle \neq |\psi\rangle$ quantum states $\Rightarrow |\phi\rangle^{\otimes n}$, $|\psi\rangle^{\otimes n}$ can be distinguished with probability $p(n) \rightarrow 1 \ (n \rightarrow \infty)$

Stateless simulation scheme $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K'}$ pick $k \in_R K$, output copies of $| \phi_k \rangle$

Problem:

 $|\phi\rangle \neq |\psi\rangle$ quantum states $\Rightarrow |\phi\rangle^{\otimes n}$, $|\psi\rangle^{\otimes n}$ can be distinguished with probability $p(n) \rightarrow 1 \ (n \rightarrow \infty)$

Also works for random states sampled according to different measures.

Stateless simulation scheme $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K'}$ pick $k \in_R K$, output copies of $| \phi_k \rangle$

Problem:

 $|\phi\rangle \neq |\psi\rangle$ quantum states $\Rightarrow |\phi\rangle^{\otimes n}$, $|\psi\rangle^{\otimes n}$ can be distinguished with probability $p(n) \rightarrow 1 \ (n \rightarrow \infty)$

Also works for random states sampled according to different measures.

Statelessness implies query limit!

Stateless simulation scheme $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K'}$ pick $k \in_R K$, output copies of $| \phi_k \rangle$

Problem:

 $|\phi\rangle \neq |\psi\rangle$ quantum states $\Rightarrow |\phi\rangle^{\otimes n}$, $|\psi\rangle^{\otimes n}$ can be distinguished with probability $p(n) \rightarrow 1 \ (n \rightarrow \infty)$

Also works for random states sampled according to different measures.

Statelessness implies query limit!

Similar argument for unitaries.

1. Quantum theory is *inherently probabilistic*.

- 1. Quantum theory is *inherently probabilistic*.
- \Rightarrow no need for an external source of randomness

- 1. Quantum theory is *inherently probabilistic*.
- \Rightarrow no need for an external source of randomness
- 2. A random state and *part of an entangled state* look the same.

- 1. Quantum theory is inherently probabilistic.
- \Rightarrow no need for an external source of randomness
- 2. A random state and *part of an entangled state* look the same.

- 1. Quantum theory is inherently probabilistic.
- \Rightarrow no need for an external source of randomness
- 2. A random state and *part of an entangled state* look the same.

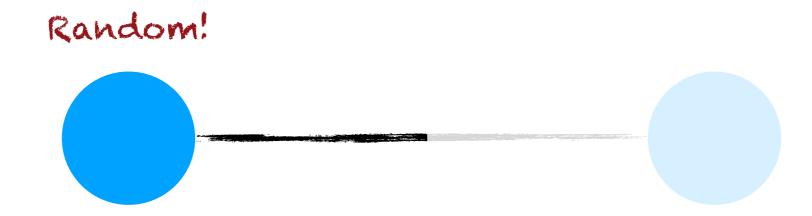
Random!

- 1. Quantum theory is inherently probabilistic.
- \Rightarrow no need for an external source of randomness
- 2. A random state and *part of an entangled state* look the same.



 \Rightarrow stateful oracle simulation without any randomness, just by maintaining entanglement with the distinguisher!

- 1. Quantum theory is inherently probabilistic.
- \Rightarrow no need for an external source of randomness
- 2. A random state and *part of an entangled state* look the same.



 \Rightarrow stateful oracle simulation without any randomness, just by maintaining entanglement with the distinguisher!

Fact: *n* copies of a Haar random state look like a single Haar random state on the symmetric subspace $\operatorname{Sym}_{d,n}$ of $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \ldots \otimes \mathbb{C}^d$ looks like half a maximally entangled state on $\operatorname{Sym}_{d,n} \otimes \operatorname{Sym}_{d,n}$

Several new algorithmic tools for garbageless quantum state preparation

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
 - first (we think) quantum application of exact unitary designs (Kane '15)

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
 - first (we think) quantum application of exact unitary designs (Kane '15)
 - Exact adaptive-to-nonadaptive reduction using "postselection"

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
 - first (we think) quantum application of exact unitary designs (Kane '15)
 - Exact adaptive-to-nonadaptive reduction using "postselection"
 - Uniqueness property of the Stinespring dilation

Summary, open questions

Summary:

- We develop a theory of stateful simulation of random quantum primitives.
- Random quantum states can be approximately simulated efficiently using a stateful algorithm
- Random unitaries can be simulated exactly in a space-efficient using a stateful algorithm.
- The random state simulator can be used to construct unconditionally secure untraceable quantum money.

Open questions:

- Can we simulate random unitaries efficiently?
- (From JLS '19) Construct pseudorandom unitaries!