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Results — overview

‣We study the simulation of random quantum objects, i.e. random states 

and random unitary operations 

‣We develop a theory of their stateful simulation, a quantum analogue of 

Lazy sampling 

‣For random states, we develop an efficient protocol for stateful simulation 

‣For random unitaries, we devise a simulation method that runs in 

polynomial space 

‣As an application, we design a quantum money scheme that is 

unconditionally unforgeable and untraceable.



Introduction



Randomness…

…is extremely useful. Applications: 

‣ All of cryptography  

‣ Monte Carlo simulation 

‣ Randomized algorithms 

‣ …
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Another example: random function

Function  such that   independentlyf : {0,1}m → {0,1}n f(x) ∈R {0,1}n

Oracle 
simulation for  

Randomness 
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Stateful 
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Example application: Haar money

No-cloning principle: quantum information cannot be copied.

|ϕ⟩ ∈R S ⊂ ℂ2n

Unforgeable ✓ 

Untraceable ✓

Can the Bank 
sample such a 
random state?

Haar money (JLS ’19):

Oldest idea in quantum crypto: Let’s make money out of it!

No, but they can simulate it!

Two options:

‣ Use pseudorandom quantum state, computationally 
secure untraceable quantum money (JLS ’19)

‣ Use stateful simulation, unconditionally secure 
untraceable quantum money (AMR)
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Limitations of stateless simulation

Stateless simulation scheme ,  pick , output copies of ⇔ { |ϕk⟩}k∈K k ∈R K |ϕk⟩

Problem:

 quantum states  can be distinguished with probability |ϕ⟩ ≠ |ψ⟩ ⇒ |ϕ⟩⊗n, |ψ⟩⊗n

p(n) → 1 (n → ∞)

Statelessness implies query limit!

Also works for random states sampled according to different measures.

Similar argument for unitaries.
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Diving deep into quantum theory…

1. Quantum theory is inherently probabilistic.

 no need for an external source of randomness⇒

2. A random state and part of an entangled state look the same.

Random!

 stateful oracle simulation without any randomness, just by maintaining entanglement 
with the distinguisher!
⇒

Fact:  copies of a Haar random state look like a single Haar random state on 
the symmetric subspace  of  looks like half a 

maximally entangled state on 

n
Symd,n ℂd ⊗ ℂd ⊗ … ⊗ ℂd

Symd,n ⊗ Symd,n



Technical contributions



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation

‣Concrete algorithms: approximate algorithms for the extension of 

maximally entangled states on symmetric subspaces by an additional copy



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation

‣Concrete algorithms: approximate algorithms for the extension of 

maximally entangled states on symmetric subspaces by an additional copy

‣Stateful simulation of random unitaries: combining several nice ingredients.



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation

‣Concrete algorithms: approximate algorithms for the extension of 

maximally entangled states on symmetric subspaces by an additional copy

‣Stateful simulation of random unitaries: combining several nice ingredients.

- first (we think) quantum application of exact unitary designs (Kane ’15)



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation

‣Concrete algorithms: approximate algorithms for the extension of 

maximally entangled states on symmetric subspaces by an additional copy

‣Stateful simulation of random unitaries: combining several nice ingredients.

- first (we think) quantum application of exact unitary designs (Kane ’15)

- Exact adaptive-to-nonadaptive reduction using “postselection”



Technical contributions

‣Several new algorithmic tools for garbageless quantum state preparation

‣Concrete algorithms: approximate algorithms for the extension of 

maximally entangled states on symmetric subspaces by an additional copy

‣Stateful simulation of random unitaries: combining several nice ingredients.

- first (we think) quantum application of exact unitary designs (Kane ’15)

- Exact adaptive-to-nonadaptive reduction using “postselection”

- Uniqueness property of the Stinespring dilation



Summary, open questions

Summary: 

‣We develop a theory of stateful simulation of random quantum primitives. 

‣Random quantum states can be approximately simulated efficiently using a stateful 
algorithm 

‣Random unitaries can be simulated exactly in a space-efficient using a stateful algorithm. 

‣The random state simulator can be used to construct unconditionally secure untraceable 
quantum money.

Open questions: 

‣Can we simulate random unitaries efficiently? 

‣ (From JLS ’19) Construct pseudorandom unitaries!


