Compact Adaptively Secure ABE from k-Lin: Beyond NC¹ and Towards NL

Huijia (Rachel) Lin and <u>Ji Luo</u>

UNIVERSITY of WASHINGTON

Attribute-Based Encryption [SW05]

Setup \rightarrow mpk, msk $KeyGen(msk, f) \rightarrow sk$ policy —

Compact: |ct| = O(|x|)**Expressive:** $f \in powerful class of functions$

x, ct

Enc(mpk, x, μ) \rightarrow ct attribute — L message

Attribute-Based Encryption [SW05]

Setup \rightarrow mpk, msk KeyGen(msk, f_i) \rightarrow sk_i

Collusion Resistance

Message is hidden given arbitrary number of unauthorized keys.

x, ct

Enc(mpk, x, μ) \rightarrow ct

Adaptive IND-CPA Security

Challenging to have it all

- \star Compactness: |ct| = O(|x|)
- **Adaptive Security**
- **Standard Assumptions**

- Goal. Have it ALL for expressive classes of policies. Previously, the largest class was NC¹ [KW19].
- Contribution 1. Extend to ABP. Arithmetic Branching Programs \supseteq NC¹, arithmetic computation over \mathbb{Z}_p .

not flexible NC¹ and ABP are **non-uniform**:

Each sk works with attribute of **fixed** length.

Challenging to have it all

- \star Compactness: |ct| = O(|x|)
- **Adaptive Security**
- **Standard** Assumptions

Contribution 2. **DFA**, **NFA** (regular languages) the **first** ABE for uniform computation with all above

- L, NL * (log-space Turing machines)
 - * relaxed compactness

- flexible ABE for **uniform** computation: Each sk works with attribute of any length.

Related Works: Non-Uniform Model

NOT compact

NOT adaptive

[LOSTW10] for MSP

[GPSW06] for MSP [GVW13, BGGHNSVV14] for *P*/poly

all-in-one: compact, adaptive, standard assumptions

[KW19] for NC^1

concurrent [GW20] for BP

NON-standard assumptions

[LW12] for MSP *q*-type assumption

this work for ABP $\leftarrow k$ -Lin in pairing groups

Related Works: Uniform Model

NOT adaptive **NOT compact** or

[Wat12, Att14, AMY19, GWW19] for DFA concurrent [GW20] for NFA

all-in-one: compact, adaptive, standard assumptions

this work for DFA, NFA concurrent [GW20] for DFA

beyond finite automata

[AS16] for P (FE, based on iO)

k-Lin

→ this work for L, NL $\frac{|ct| = O(|x|TS2^S)}{|sk| = O(|TM|)}$ (relaxed compactness)

NON-standard or assumptions

New General Framework

special randomized encoding

1-ABE via AKGS and IPFE

convenience – μ in secret key

Arithmetic Key Garbling Scheme

Security (partial hiding).

$$\operatorname{Sim}(f, x, \mu f(x)) \to \ell_1, \dots, \ell_m$$

Arithmetic Key Garbling Scheme

- 1. Label functions: $L_1, ..., L_m \leftarrow \text{Garble}(f, \mu; r)$ $\ell_1, ..., \ell_m = L_1(x), ..., L_m(x)$ 2. Garblings: $f, x, \ell_1, \dots, \ell_m$ $f: \mathbb{Z}_p^n \to \mathbb{Z}_p$ $x \in \mathbb{Z}_p^n$

Linearity.

- 1. $L_1, ..., L_m$ are linear in x: $L_i(x) = \langle L_i, x \rangle$
- 2. coefficients of L_1, \ldots, L_m are linear in μ, r
- 3. Eval is linear in ℓ_1, \ldots, ℓ_m

thanks to partial hiding

Inner-Product Functional Encryption

isk \leftarrow KeyGen(msk, v)

ict
$$\leftarrow$$
 Enc(msk, \boldsymbol{u})

Function-Hiding Property

$$\begin{cases} isk(\boldsymbol{v}_1) & isk(\boldsymbol{v}_2) & \cdots & isk(\boldsymbol{v}_I) \\ isk(\boldsymbol{u}_1) & ict(\boldsymbol{u}_2) & \cdots & ict(\boldsymbol{u}_J) \end{cases}$$
 is

if
$$\langle \boldsymbol{u}_i, \boldsymbol{v}_j \rangle = \langle \boldsymbol{u}'_i, \boldsymbol{v}'_j \rangle$$
 for all $i, j \approx \begin{cases} 1S \\ i \\ i \end{cases}$

Adaptive Security: sk/ict can interleave.

 $\begin{cases} \operatorname{isk}(\boldsymbol{v}_1') & \operatorname{isk}(\boldsymbol{v}_2') & \cdots & \operatorname{isk}(\boldsymbol{v}_I') \\ \operatorname{isk}(\boldsymbol{u}_1') & \operatorname{ict}(\boldsymbol{u}_2') & \cdots & \operatorname{ict}(\boldsymbol{u}_I') \end{cases}$

Pairing-Based IPFE [ALS16, LV16]

 $[isk]_{2} \leftarrow KeyGen(msk, [v]_{2}) \rightarrow Dec$ $[ict]_{1} \leftarrow Enc(msk, [u]_{1}) \qquad = pairing \qquad [\langle u, v \rangle]_{T}$

Asymmetric Pairing Groups

$$G_1: [a]_1 = g_1^a \xrightarrow{pairing} g_2: [b]_2 = g_2^b \xrightarrow{pairing} g_2$$

$[\![ab]\!]_{\mathrm{T}} = g_{\mathrm{T}}^{ab} \in G_{\mathrm{T}}$

Intuitions for Security.

- IPFE \implies only ℓ_i 's are revealed
- AKGS \Rightarrow only $\mu f(x)$ is revealed

labels in the exponent $\llbracket \ell_j = L_j(x) \rrbracket_{\mathrm{T}}$ Eval linear $\|\mu f(x)\|_{\mathbf{T}}$

Selective Security of 1-ABE

Next step: hardwire labels in secret key

Hardwire Labels in Secret Key via IPFE

Next step: simulate labels want. μ is hidden

Simulate Labels via AKGS

ct_x ict (x 1)

Adaptive Security?

Idea. Rely on special structure of simulator.

need x to simulate

Special Simulation Structure

Real Garbling

 ℓ_1, \ldots, ℓ_m are uniformly random subject to correctness: Eval $(f, \mathbf{x}, \ell_1, \dots, \ell_m) = \mu f(\mathbf{x}).$ linear constraint

Simulator

- 1. Draw $\ell_2, \ldots, \ell_m \leftarrow \mathbb{Z}_p$. \odot independent of x
- 2. Find unique ℓ_1 s.t. evaluation is correct. \odot only one label depends on x

equation depends on x

 $\ell_2 \leftarrow \mathbb{Z}_p$

 $\ell_i \leftarrow \mathbb{Z}_p$

Idea. Put ℓ_1 in ciphertext

Simulation for Adaptive Security valid simulation strategy $\mathrm{sk}_{f,\mu}$ isk (0 1 0) isk (0 0 ℓ_2) $\ell_2 \leftarrow \mathbb{Z}_p$ isk (0 0 ℓ_i) $\ell_i \leftarrow \mathbb{Z}_p$ ${\mathcal X}$ _____ s.t. f(x) = 0find ℓ_1 s.t. Eval $(f, \mathbf{x}, ...) = 0$ ict ($x \ \ell_1 \ 1$) ct_{χ}

Real World vs. Simulation

same distribution of labels

Simulation

$\ell_2, \ldots, \ell_m \leftarrow \mathbb{Z}_p$ find ℓ_1 s.t. Eval $(\cdots) = \mu f(x) = 0$ simulated labels

Bridging the Gap: Piecewise Security

 $L_1, \dots, L_m \leftarrow \text{Garble}(f, \mu)$

Labels are marginally random given subsequent label functions. for j > 1 and all x: $(L_i(x), L_{i+1}, \dots, L_m) \equiv (\$, L_{i+1}, \dots, L_m)$

 ℓ_1 is uniquely determined by $Eval(\dots) = \mu f(x)$.

We show that AKGS for ABP [IW14] is piecewise secure.

piecewise security

Adaptive Security of 1-ABE

Real World

isk (L_1 0 0 0) isk (L_2 0 0 0) $\mathrm{sk}_{f,\mu}$ $isk(L_j 0 0 0)$ $\boldsymbol{\chi}$ _____ s.t. f(x) = 0ict (x 0 0) ct_{x}

Next step: hardwire ℓ_1 in ciphertext

Hardwire ℓ_1 in Ciphertext via IPFE

Next step: find unique ℓ_1 from correctness equation

 $-\ell_1 = L_1(x)$

Find Unique ℓ_1 via AKGS

Goal. Simulate ℓ_2 as Random Next step: hardwire ℓ_2 in ciphertext isk (0 1 0 0) isk (L_2 0 0 0) $- \ell_2 = L_2(x)$: isk (L_j 0 0 0) : s.t. f(x) = 0ict ($x \ \ell_1$ 0 0) find ℓ_1 s.t. Eval(\cdots) = $\mu f(x) = 0$ $\mathrm{sk}_{f,\mu}$ $\boldsymbol{\chi}$ ct_{χ}

Hardwire ℓ_2 in Ciphertext via IPFE

Next step: replace ℓ_2 by random

$\ell_2 = L_2(x)$

find ℓ_1 s.t. Eval(...) = $\mu f(x) = 0$

Replace ℓ_2 by Random via AKGS

Next step: put ℓ_2 back into secret key

Put ℓ_2 **Back into Secret Key** via IPFE **Goal achieved:** simulate ℓ_2 Next step: simulate the other labels isk (0 1 0 0) $isk (0 0 \ell_2 0) - \ell_2 \leftarrow \mathbb{Z}_p$: $isk (L_j 0 0 0)$:.s.t. <math>f(x) = 0 find $\ell_1 s.t.$ $Eval(\dots) = \mu f(x) = 0$ $\mathrm{sk}_{f,\mu}$ ${\mathcal X}$ ct_x

Adaptive Security of 1-ABE

Final Simulation

 $\ell_2 \leftarrow \mathbb{Z}_p$ $\ell_i \leftarrow \mathbb{Z}_p$

find ℓ_1 s.t. Eval(...) = $\mu f(x) = 0$

Adaptively Secure 1-ABE

$multi \{ sk \} \{ isk (L_j) \}$

1 ct ict (x) ict (x)

multi-ciphertext security

make it public-key

Multi-Ciphertext Security

Problem. Label functions (its randomness) cannot be reused. **Idea.** Use DDH to rerandomize them.

Multi-Ciphertext Security

sk { $\begin{bmatrix} isk (L_j) \end{bmatrix}_2$ } Intuition. Label functions are pseudorandom via DDH. ct₁ $\begin{bmatrix} ict (\rho_1 x_1) \end{bmatrix}_1$ ct₂ $\begin{bmatrix} ict (\rho_2 x_2) \end{bmatrix}_1$

Problem. $[\![\rho L_j]\!]_T$ is not pseudorandom given $[\![\rho]\!]_1$, $[\![L_j]\!]_2$. **Idea.** Use IPFE to move ρ into the same group as L_j 's, then use DDH.

Adaptively Secure Secret-Key ABE

multi { sk } { $\begin{bmatrix} isk (L_i) \end{bmatrix}_2$ }

multi { ct } $[[ict(\rho x)]]_1$ uses msk

Slotted IPFE 2 make it public-key

multi-ciphertext security

Public-Key ABE via Slotted IPFE

KeyGen needs msk function-hiding

make it public-key

secure for ABP

uniform computation: more challenges

Ideas for Uniform Model

DFA/NFA/L/NL = matrix multiplication

piecewise secure AKGS for each input length

X unique challenge: $\#[\ell, \mathbf{r}] \propto |\mathbf{x}| TS2^S |\mathsf{TM}|$ (or $|\mathbf{x}| \cdot |\mathsf{TM}|$ for DFA/NFA) $|ct| \propto |x| TS2^{S}$ $|sk| \propto |TM|$

Neither sk nor ct can fit all label functions / labels!

Tensoring for Expansion

$\frac{\#[\tau] \land \#IJZ}{Q}$			
ℓ_{11}	ℓ_{12}	• • •	$\ell_{1^{\#}}$
ℓ_{21}	ℓ_{22}	•••	$\ell_{2\#}$
•	•	•••	• •
$\ell_{\#1}$	$\ell_{\#2}$	•••	$\ell_{\#\#}$
as if we did			

 $\#[\rho] \sim NTCOSO$

Garble(f, μ ; $|\mathbf{r}_{\rm x} \otimes \mathbf{r}_{\rm f}|$

Thank you! ia.cr/2020/318