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Introduction

Indistinguishability obfuscation (IO) is a method to transform a
program into an unintelligible one maintaining the original functionality.

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO
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Applications of iO
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IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

Introduction Recap Doubly probabilistic IO Applications Conclusion 2/15



Applications of iO

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

Introduction Recap Doubly probabilistic IO Applications Conclusion 2/15



Related work on removing subexp. IO

I Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

I short signatures
I universal samplers
I non-interactive multiparty key exchange
I trapdoor one-way permutations
I multi-key functional encryption
I . . .

I But the supported operations are relatively restricted
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Probabilistic IO

iO compiles programs into
unintelligible ones, while

preserving their functionality.

piO compiles randomized
programs into deterministic
unintelligible ones, while

preserving their functionality.

P iO(P)
iO

x

P(x)

x

P(x)

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

functionally
equivalent

P piO(P)
piO

x

P(x ; r)

x

P(x ; r ′)

P1 ≈ P2

piO(P1) ≈ piO(P2)

piO piO

deterministic

“functionally
indistinguishable”
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Why does piO require subexponential iO?

I Programs are only required to be “functionally indistinguishable”

I Captures a vast class of programs, e.g.

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

I Strategy due to Canetti et al., [CLTV15]:
I derive random coins from input x via PRF(K , x)

r := PRF(x)

return P(x ; r)

iO piO(P)

I use iO to obfuscate this deterministic program
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Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Main tool – Extremely lossy functions

I Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two
indistinguishable modes:

injective mode
image size exponential

extremely lossy mode
image size polynomial

I exist from exponential DDH

I We believe that some sort of (sub)exponential assumption is
inherent for probabilistic iO

I ELFs can be used to push this subexponentiality to a much more
well-understood assumption
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First try

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

x = ELF(x)

r := PRF(x)

return P(x ; r)

I First try: reduce number of hybrids by applying the ELF on the
input x

I But pre-processing the program input x with an ELF will not
preserve the expected functionality of the circuit
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Our observation

I Common ground for many applications of piO:

D(m)

piO(P)

x
inputs x come from
distributions D(m)

I e.g., D(m) outputs encryptions of m,
or, D(·) samples public encryption keys.

I Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs
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Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D
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Construction

(x1, aux1)
valid wrt. D?

(x2, aux2)
valid wrt. D?

return ⊥

r := PRF(x1, x2)

return
P(x1, x2; r)

no

no

yes

yes

iO dpiOD(P) dpiOD(P)

D(m1)

x1 := D(m1; ELF(r1))

aux1 ← “NIZK-proof”

return (x1, aux1)

D(m1; r1)

aux1x1

D(m2)

x2 := D(m2; ELF(r2))

aux2 ← “NIZK-proof”

return (x2, aux2)

D(m2; r2)

aux2x2 number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible mi is small)
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Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec
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Application LHE/FHE

I LHE construction due to Canetti et al., [CLTV15]

I one NAND gate is evaluated as follows:

a1 := Decsk1
(C1)

a2 := Decsk1
(C2)

return Encpk2
(a1∧a2)

Eval∧

Encpk1
(m1) Encpk1

(m2)

C1 C2

piO

use compiled input samplers

produce output with
compiled input sampler

for next level
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a1 := Decsk1
(C1)

a2 := Decsk1
(C2)

return Encpk2
(a1∧a2)
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poly reduction to iO

subexp reduction to iO

piO abstraction

subexp iO plus ELF
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