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Introduction

Indistinguishability obfuscation (10) is a method to transform a
program into an unintelligible one maintaining the original functionality.
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Applications of i0

Functional
encryption

» We can build almost
anything from i0.
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Related work on removing subexp. 1O

» Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

short signatures

universal samplers

non-interactive multiparty key exchange
trapdoor one-way permutations
multi-key functional encryption
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Probabilistic 10

i0 compiles programs into
unintelligible ones, while
preserving their functionality.
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Probabilistic 10

i0 compiles programs into pi0 compiles randomized
unintelligible ones, while programs into deterministic
preserving their functionality. — unintelligible ones, while
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Why does pi0 require subexponential 107

» Programs are only required to be “functionally indistinguishable”
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return ENc(pk, x; r) return ENc(pk, 0; r)

» Strategy due to Canetti et al., [CLTV15]:
» derive random coins from input x via PRF(K x)

i0

pi0(P)

> use i0 to obfuscate this deterministic program
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Construction of pi0 due to Canetti

et al., [CLTV15]

pi0 construction:

Example:

Pi(x;r)

return ENC(pk, x; r)

Pa(x; r)

return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully

identically

> in our example, P; and P, behave very differently
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pi0 construction: Example:

Pi(x;r) Pa(x; r)

= PRF N A N
return ENC(pk, x; r) return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully
identically

> in our example, P; and P, behave very differently

~- direct (polynomial) reduction to 10 won't work

> Use a “one-input-at-a-time” hybrid argument for all possible inputs
> this includes the randomness

~> QOur goal: reduce number of hybrids to a polynomial amount
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Main tool — Extremely lossy functions

» Extremely lossy functions (ELFs) due to Zhandry, [Zhal6] offer two
indistinguishable modes:

injective mode extremely lossy mode
image size exponential image size polynomial
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Main tool — Extremely lossy functions

» Extremely lossy functions (ELFs) due to Zhandry, [Zhal6] offer two
indistinguishable modes:

injective mode extremely lossy mode
image size exponential image size polynomial

> exist from exponential DDH

» We believe that some sort of (sub)exponential assumption is
inherent for probabilistic 10

> ELFs can be used to push this subexponentiality to a much more
well-understood assumption
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First try

» First try: reduce
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input x

Pi(x;r)

return ENc(pk, x; r)

Py(x;r)

return ENc(pk, 0; r)

number of hybrids by applying the ELF on the

Doubly probabilistic 10 Applications

Conclusion

9/15



First try

Pi(x;r)

return ENc(pk, x; r)

Py(x;r)

return ENc(pk, 0; r)

» First try: reduce number of hybrids by applying the ELF on the

input x

» But pre-processing the program input x with an ELF will not

preserve the expected functionality of the circuit
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Our observation

» Common ground for many applications of pi0:
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pi0(P)

> e.g., D(m) outputs encryptions of m,
or, D(-) samples public encryption keys.
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D(m)
Xl inputs x come from
distributions D(m)

pi0(P)

> e.g., D(m) outputs encryptions of m,
or, D(-) samples public encryption keys.

» Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs
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» Our framework: doubly-probabilistic 10 (dpiO)
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Construction
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[xl = D(m; ELF(rl))J [xz = D(my; ELF(Q))]
_ ¥ ¥ _
D(ml; rl) [auxl = “NIZK—proof”J auxp “NIZK—proof”] D(mZ; rZ)
¥ M

[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

X1 H—l auxp X2 H—l auxo

dpiOp(P)
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Construction

¥ v
[xl = D(m; ELF(rl))J [xz = D(my; ELF(rz))]
_ ¥ ¥ _
D(ml; fl) [auxl — “NIZK—proof”J auxp “NIZK—proof”] D("72; r2)
¥ M

[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

X1 H—l auxp X2 H—l auxo

yes

(x1, aux1) no

valid wrt. D?
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r == PRF(x1, x2)
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Construction

v v
[xl = D(m; ELF(rl))J [xz = D(my; ELF(Q))]
_ ¥ ¥
D(ml; rl) [auxl <+ “NIZK-proof” auxp < “NIZK-proof”

¥ M
[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

(x1, aux1)
valid wrt. D?

(x2,aux2)
valid wrt. D2

i0

r == PRF(x1, x2)
return
P(x1, x2;
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Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L
circuits C, if

» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on
ciphertexts
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Application LHE /FHE
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» LHE construction due to Canetti et al., [CLTV15]

» one NAND gate is evaluated as follows:
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Application LHE /FHE
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Application LHE /FHE

» LHE construction due to Canetti et al., [CLTV15]

» one NAND gate is evaluated as follows:

use compiled input samplers

N

ENCpk m1) ENCpk mg)

(G, aux;) (G, auxy)

[ a; = DECskl(Cl)
0 v produce output with
dPl ENCpk, [ 22 = DECy, (C2) compiled input sampler
for next level

-/

-/

[ retur ENcka)alﬁaz) ]
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» And what can we do
from polynomial i0
and ELFs?

poly reduction to i0 -
subexp reduction to i0 -

pi0 abstraction

subexp 10 plus ELF -
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