The Usefulness of Sparsifiable Inputs:
How to Avoid Subexponential iO

Thomas Agrikola!  Geoffroy Couteau?>  Dennis Hofheinz?

IKarlsruhe Institute of Technology (KIT), Germany
2|RIF, Paris-Diderot University, CNRS, France
3ETH Zurich, Switzerland

May 12, 2020



Introduction

Indistinguishability obfuscation (10) is a method to transform a
program into an unintelligible one maintaining the original functionality.

Py

o Jio

i0(P)

P>

Q

i0(Ps)

Introduction 1/15



Applications of i0

Functional
encryption

» We can build almost
anything from i0.

[GGHRS+13]

o B
® 3.

<
S$a
=]
<2
E=
o' g
ER

<

Introduction Recap Doubly probabilistic 10 Applications Conclusion 2/15



Applications of i0

Functional
encryption

» We can build almost
anything from 1i0.

—“\(‘“\‘é

fof
\O o Jnines
"

[GGHRS+13]

>
S
R
R

)
W

» But what can we do
from polynomial i07

o 3
® 3.

<
g3
=]
<2
=3
o9
ER

<

poly reduction to i0 -
subexp reduction to i0 [

Introduction Recap Doubly probabilistic 10 Applications Conclusion 2/15



Related work on removing subexp. 1O

» Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

short signatures

universal samplers

non-interactive multiparty key exchange
trapdoor one-way permutations
multi-key functional encryption

vVYy VY VvVVvYyYy

Introduction Recap Doubly probabilistic 10 Applications Conclusion 3/15



Related work on removing subexp. 1O

» Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

short signatures

universal samplers

non-interactive multiparty key exchange
trapdoor one-way permutations
multi-key functional encryption

vVYy VY VvVVvYyYy

» But the supported operations are relatively restricted

Introduction Recap Doubly probabilistic 10 Applications Conclusion 3/15



Applications of i0

Functional
encryption

» We can build almost
anything from 1i0.

—“\(‘“\‘é

fof
\O o Jnines
"

[GGHRS+13]

>
S
R
R

)
W

» But what can we do
from polynomial i07

o 3
® 3.

<
g3
=]
<2
=3
o9
ER

<

poly reduction to i0 -
subexp reduction to i0 [

Introduction Recap Doubly probabilistic 10 Applications Conclusion 4/15



Applications of i0

encryption

®
=
£
5
=
=
o

» We can build almost
anything from 1i0.

—Nw‘“\‘é

fof
\O o Jnines
"

)
et

» But what can we do
from polynomial i07

o 3
® 3.

<
g3
=]
< 2
=3
o9
ER

<

poly reduction to i0 -
subexp reduction to i0 [

pi0 abstraction

Introduction Recap Doubly probabilistic 10 Applications Conclusion 4/15



Probabilistic 10

i0 compiles programs into
unintelligible ones, while
preserving their functionality.

Introduction Recap Doubly probabilistic 10 Applications Conclusion 5/15



Probabilistic 10

i0 compiles programs into
unintelligible ones, while

Introduction

preserving their functionality.

functionally
equivalent

-
'Ol liO

'U(Pl) ~ iU(Pz)

[

.

Recap Doubly probabilistic 10

Applications

Conclusion

5/15



Probabilistic 10

i0 compiles programs into pi0 compiles randomized
unintelligible ones, while programs into deterministic
preserving their functionality. — unintelligible ones, while
preserving their functionality.

! | | i
][] )
l | l |
P(x) P(x) P(x;r) P(x; r')

H
Il
H
H
Q
H

of e e

i0(P1) ~ i0(P2) pi0(P) pi0(P2)

Q

Introduction Recap Doubly probabilistic 10 Applications Conclusion 5/15



Probabilistic 10

i0 compiles programs into pi0 compiles randomized
unintelligible ones, while programs into deterministic
preserving their functionality. — unintelligible ones, while
preserving their functionality.

X X

X
l 0 l pi0 i deterministic
]=efaa] [ )
P(x) P(x) P(x;r) P(x; r')
functionally functionally
equivalent indistinguishable”

he &
iOl liO piOl lPiU
z

.4
2
S
2
B
=2
S

Introduction Recap Doubly probabilistic 10 Applications Conclusion 5/15



Why does pi0 require subexponential 107

» Programs are only required to be “functionally indistinguishable”

Introduction Recap Doubly probabilistic 10 Applications Conclusion 6/15



Why does pi0 require subexponential 107

» Programs are only required to be “functionally indistinguishable”

> Captures a vast class of programs, e.g.

Pi(x;r) Pay(x; r)

return ENc(pk, x; r) return ENc(pk, 0; r)

Introduction Recap Doubly probabilistic 10 Applications Conclusion 6/15



Why does pi0 require subexponential 107

» Programs are only required to be “functionally indistinguishable”

> Captures a vast class of programs, e.g.

Pi(x;r) Pay(x; r)

return ENc(pk, x; r) return ENc(pk, 0; r)

» Strategy due to Canetti et al., [CLTV15]:
» derive random coins from input x via PRF(K x)

Introduction Recap Doubly probabilistic 10 Applications Conclusion 6/15



Why does pi0 require subexponential 107

» Programs are only required to be “functionally indistinguishable”

> Captures a vast class of programs, e.g.

Pi(x;r) Pay(x; r)

return ENc(pk, x; r) return ENc(pk, 0; r)

» Strategy due to Canetti et al., [CLTV15]:
» derive random coins from input x via PRF(K x)

i0

pi0(P)

> use i0 to obfuscate this deterministic program

Introduction Recap Doubly probabilistic 10 Applications Conclusion 6/15



Construction of pi0 due to Canetti

et al., [CLTV15]

pi0 construction:

Example:

Pi(x;r)

return ENC(pk, x; r)

Pa(x; r)

return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully

identically

> in our example, P; and P, behave very differently

Introduction Recap

Doubly probabilistic 10 Applications

Conclusion

7/15



Construction of pi0 due to Canetti et al., [CLTV15]

pi0 construction: Example:

Pi(x;r) Pa(x; r)

= PRF N A N
return ENC(pk, x; r) return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully
identically

> in our example, P; and P, behave very differently

~- direct (polynomial) reduction to 10 won't work

Introduction Recap Doubly probabilistic 10 Applications Conclusion 7/15



Construction of pi0 due to Canetti et al., [CLTV15]

pi0 construction:

Example:

Pi(x;r)

return ENC(pk, x; r)

Pa(x; r)

return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully

~- direct (polynomial) reduction to 10 won't work

> Use a “one-input-at-a-time” hybrid argument for all possible inputs

Introduction

identically

> in our example, P; and P, behave very differently

» this includes the randomness

Recap

Doubly probabilistic 10 Applications

Conclusion

7/15



Construction of pi0 due to Canetti et al., [CLTV15]

pi0 construction: Example:

Pi(x;r) Pa(x; r)

= PRF N A N
return ENC(pk, x; r) return ENC(pk, 0; r)

» But i0 security can only be applied if circuits behave fully
identically

> in our example, P; and P, behave very differently

~- direct (polynomial) reduction to 10 won't work

> Use a “one-input-at-a-time” hybrid argument for all possible inputs
> this includes the randomness

~> QOur goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic 10 Applications Conclusion 7/15



Main tool — Extremely lossy functions

» Extremely lossy functions (ELFs) due to Zhandry, [Zhal6] offer two
indistinguishable modes:

injective mode extremely lossy mode
image size exponential image size polynomial

Introduction Recap Doubly probabilistic 10 Applications Conclusion 8/15



Main tool — Extremely lossy functions

» Extremely lossy functions (ELFs) due to Zhandry, [Zhal6] offer two

indistinguishable modes:

injective mode
image size exponential

> exist from exponential DDH

Introduction Recap Doubly probabilistic 10

extremely lossy mode
image size polynomial

Applications

Conclusion

8/15



Main tool — Extremely lossy functions

» Extremely lossy functions (ELFs) due to Zhandry, [Zhal6] offer two
indistinguishable modes:

injective mode extremely lossy mode
image size exponential image size polynomial

> exist from exponential DDH

» We believe that some sort of (sub)exponential assumption is
inherent for probabilistic 10

> ELFs can be used to push this subexponentiality to a much more
well-understood assumption

Introduction Recap Doubly probabilistic 10 Applications Conclusion 8/15



First try

» First try: reduce

Introduction

input x

Pi(x;r)

return ENc(pk, x; r)

Py(x;r)

return ENc(pk, 0; r)

number of hybrids by applying the ELF on the

Doubly probabilistic 10 Applications

Conclusion

9/15



First try

Pi(x;r)

return ENc(pk, x; r)

Py(x;r)

return ENc(pk, 0; r)

» First try: reduce number of hybrids by applying the ELF on the

input x

» But pre-processing the program input x with an ELF will not

preserve the expected functionality of the circuit

Introduction Recap Doubly probabilistic 10 \pplications

Conclusion

9/15



Our observation

» Common ground for many applications of pi0:

Introduction

D(m)

i

pi0(P)

inputs x come from
distributions D(m)

Doubly probabilistic 10

Applications

10/15



Our observation

» Common ground for many applications of pi0:

D(m)
Xl inputs x come from
distributions D(m)

pi0(P)

> e.g., D(m) outputs encryptions of m,
or, D(-) samples public encryption keys.

Introduction Recap Doubly probabilistic 10 \pplications Conclusion 10/15



Our observation

» Common ground for many applications of pi0:

D(m)
Xl inputs x come from
distributions D(m)

pi0(P)

> e.g., D(m) outputs encryptions of m,
or, D(-) samples public encryption keys.

» Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs

Introduction Recap Doubly probabilistic 10 \pplications Conclusion 10/15



Doubly-Probabilistic 10

» Our framework: doubly-probabilistic 10 (dpiO)

Introduction

D(m)

pi0(P)

Recap

Doubly probabilistic 10

Applications

11/15



Doubly-Probabilistic 10

» Our framework: doubly-probabilistic 10 (dpiO)

CRS model
(fgz::ji:::i}> ‘,,///

Introduction

D(m)

pi0(P)

D(m)

Xﬁaux

dpiOp(P)

~—

1-source dpiO

Doubly probabilistic 10

Applications

11/15



Doubly-Probabilistic 10

» Our framework: doubly-probabilistic 10 (dpiO)

D(m)

pi0(P)

Introduction Recap

£

D(m) | <

dpiOp(P)

~—

1-source dpiO

Doubly probabilistic 10 Applications

Xﬁaux/

compiled
input sampler

certifies that
x is valid

Conclusion 11/15



Doubly-Probabilistic 10

» Our framework: doubly-probabilistic 10 (dpiO)

Introduction

D(m)

pi0(P)

dpiOp(P)

obfuscation
~N depends on

1-source dpiO

Doubly probabilistic 10

input sampler D

Applications Conclusion

11/15



Doubly-Probabilistic 10

» Our framework: doubly-probabilistic 10 (dpiO)

£

Introduction

D(m)

pi0(P)

D(m)

D(m2)

X1 Hj aux; Xo ﬁ auxs

dpiOp(P)

Doubly probabilistic 10

2-source dpiO

Applications

11/15



Construction

D(m)

Introduction Recap

X1 lgglggl auxp X2 igglggl auxo

dpiOp(P)

Doubly probabilistic 10

Applications

12/15



Construction

v v
[xl = D(m; ELF(rl))J [xz = D(my; ELF(Q))]
_ ¥ ¥ _
D(ml; rl) [auxl = “NIZK—proof”J auxp “NIZK—proof”] D(mZ; rZ)
¥ M

[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

X1 H—l auxp X2 H—l auxo

dpiOp(P)

Introduction Recap Doubly probabilistic 10 Applications Conclusion 12/15



Construction

¥ v
[xl = D(m; ELF(rl))J [xz = D(my; ELF(rz))]
_ ¥ ¥ _
D(ml; fl) [auxl — “NIZK—proof”J auxp “NIZK—proof”] D("72; r2)
¥ M

[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

X1 H—l auxp X2 H—l auxo

yes

(x1, aux1) no

valid wrt. D?
yes

r == PRF(x1, x2)

10 dpiOp(P)

Introduction Recap Doubly probabilistic 10 Applications Conclusion 12/15



Construction

v v
[xl = D(m; ELF(rl))J [xz = D(my; ELF(Q))]
_ ¥ ¥
D(ml; rl) [auxl <+ “NIZK-proof” auxp < “NIZK-proof”

¥ M
[[ return (x1, aux;) ]I [[ return (xo, aux) ]I

(x1, aux1)
valid wrt. D?

(x2,aux2)
valid wrt. D2

i0

r == PRF(x1, x2)
return
P(x1, x2;

Introduction Recap

Doubly probabilistic 10 Applications

D(my; 1)

number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible m; is small)

dpiOp(P)

Conclusion 12/15



Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L
circuits C, if

» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on
ciphertexts

Introduction Recap Doubly probabilistic 10 Applications Conclusion 13/15



Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L
circuits C, if

» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on
ciphertexts

Introduction Recap Doubly probabilistic 10 Applications Conclusion 13/15



Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L

Introduction

circuits C, if
» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on

ciphertexts

ENc ENc

C1 @

Recap Doubly probabilistic 10 Applications Conclusion

13/15



Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L
circuits C, if

» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on
ciphertexts

m my
ENc ENc
< 2
EVALc
DEc

Introduction Recap Doubly probabilistic 10 Applications Conclusion 13/15



Leveled Homomorphic Encryption

» LHE, = (GEN, Exc, DEC, EvAL) is a LHE scheme for depth-L

Introduction

circuits C, if

» (GEN, Enc, DEC) is a PKE scheme, and

> EVAL allows to homomorphically evaluate depth-L circuits on

ciphertexts

m

EVALc

;iﬁz

Cc

S

Recap Doubly probabilistic 10

Applications

Conclusion

13/15



Application LHE /FHE

Introduction

» LHE construction due to Canetti et al., [CLTV15]

» one NAND gate is evaluated as follows:

ENCpk m1)

ENCpk1 mg)

=

=

EvALx

Recap Doubly probabilistic 10

Applications

14/15



Application LHE /FHE

» LHE construction due to Canetti et al., [CLTV15]

» one NAND gate is evaluated as follows:

ENCpkl(ml) ENCpkl(mg)

1 _F

(o )
plO [ ap = ECskl(C2) j

[ return ENcpkz(al/\az) ]

Introduction Recap Doubly probabilistic 10 Applications Conclusion 14/15



Application LHE /FHE

» LHE construction due to Canetti et al., [CLTV15]

» one NAND gate is evaluated as follows:

use compiled input samplers

N

ENCpk m1) ENCpk mg)

(G, aux;) (G, auxy)

[ a; = DECskl(Cl)
0 v produce output with
dPl ENCpk, [ 22 = DECy, (C2) compiled input sampler
for next level

-/

-/

[ retur ENcka)alﬁaz) ]

Introduction Recap Doubly probabilistic 10 Applications Conclusion 14/15



Conclusion

> We can build almost
anything from i0.

®
=
£
5
=
=
o

encryption

>
N
S NS
N i S
& 0!
\O o Jnines
¢

» But what can we do
from polynomial i07

)
et

o 3
® 3.

<
g3
=]
< 2
=3
o9
ER

<

poly reduction to i0 -
subexp reduction to i0 [

pi0 abstraction

Introduction Recap Doubly probabilistic 10 Applications Conclusion 15/15



Conclusion

» We can build almost
anything from i0.

» But what can we do
from polynomial i07?

» And what can we do
from polynomial i0
and ELFs?

poly reduction to i0 -
subexp reduction to i0 -

pi0 abstraction

subexp 10 plus ELF -

Introduction Recap

encryption

>
S

S o unn®

~ 0!

& \0 nes
@ et

W

et

& F‘WuE]

u,,””

c
33

<
-3
=]
%‘_’
3]
o3

£
="<

Doubly probabilistic 10 Applications Conclusion 15/15



	Introduction
	Recap
	Doubly probabilistic IO
	Applications
	Conclusion

