The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO

Thomas Agrikola¹ Geoffroy Couteau² Dennis Hofheinz³

¹Karlsruhe Institute of Technology (KIT), Germany ²IRIF, Paris-Diderot University, CNRS, France ³ETH Zurich. Switzerland

May 12, 2020

Indistinguishability obfuscation (IO) is a method to transform a program into an *unintelligible* one maintaining the original functionality.

Recap

 We can build almost anything from i0.

 We can build almost anything from i0.

But what can we do from polynomial i0?

> poly reduction to i0 subexp reduction to i0

Introduction

- Previous approaches to avoid subexponential reductions to iO: replace iO with functional encryption, [GS16; GPSZ17; LZ17; KLMR18]
 - short signatures
 - universal samplers
 - non-interactive multiparty key exchange
 - trapdoor one-way permutations
 - multi-key functional encryption
 - ▶

- Previous approaches to avoid subexponential reductions to iO: replace iO with functional encryption, [GS16; GPSZ17; LZ17; KLMR18]
 - short signatures
 - universal samplers
 - non-interactive multiparty key exchange
 - trapdoor one-way permutations
 - multi-key functional encryption
 -
- But the supported operations are relatively restricted

 We can build almost anything from i0.

But what can we do from polynomial i0?

> poly reduction to i0 subexp reduction to i0

Introduction

 We can build almost anything from i0.

But what can we do from polynomial i0?

> poly reduction to iO subexp reduction to iO piO abstraction

Introduction

10 compiles programs into unintelligible ones, while preserving their functionality.

Introduction

Recap

Doubly probabilistic IC

Applications

10 compiles programs into unintelligible ones, while preserving their functionality.

Introduction

Recap

Doubly probabilistic IC

Applications

iO compiles programs into unintelligible ones, while preserving their functionality. piO compiles randomized programs into *deterministic* unintelligible ones, while preserving their functionality.

iO compiles programs into unintelligible ones, while preserving their functionality. piO compiles randomized programs into *deterministic* unintelligible ones, while preserving their functionality.

Recap

5/15

Programs are only required to be "functionally indistinguishable"

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.

- Strategy due to Canetti et al., [CLTV15]:
 - derive random coins from input x via PRF(K, x)

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.

- Strategy due to Canetti et al., [CLTV15]:
 - derive random coins from input x via PRF(K, x)

use iO to obfuscate this deterministic program

- But iO security can only be applied if circuits behave fully identically
 - in our example, P_1 and P_2 behave very differently

- But iO security can only be applied if circuits behave fully identically
 - ▶ in our example, P₁ and P₂ behave very differently
- \rightsquigarrow direct (polynomial) reduction to iO won't work

- But iO security can only be applied if circuits behave fully identically
 - ▶ in our example, P₁ and P₂ behave very differently
- \rightsquigarrow direct (polynomial) reduction to iO won't work
 - Use a "one-input-at-a-time" hybrid argument for all possible inputs
 - this includes the randomness

- But iO security can only be applied if circuits behave fully identically
 - in our example, P_1 and P_2 behave very differently
- \rightsquigarrow direct (polynomial) reduction to iO won't work
 - Use a "one-input-at-a-time" hybrid argument for all possible inputs
 - this includes the randomness
- ~ Our goal: reduce number of hybrids to a polynomial amount

Main tool - Extremely lossy functions

Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

injective mode image size exponential

extremely lossy mode image size polynomial

Main tool - Extremely lossy functions

Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

injective mode image size exponential

extremely lossy mode image size polynomial

exist from exponential DDH

Main tool - Extremely lossy functions

Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

extremely lossy mode image size polynomial

exist from exponential DDH

image size exponential

- We believe that some sort of (sub)exponential assumption is inherent for probabilistic i0
 - ELFs can be used to push this subexponentiality to a much more well-understood assumption

First try

First try: reduce number of hybrids by applying the ELF on the input x

First try

- First try: reduce number of hybrids by applying the ELF on the input x
- But pre-processing the program input x with an ELF will not preserve the expected functionality of the circuit

Our observation

Common ground for many applications of piO:

Our observation

Common ground for many applications of piO:

▶ e.g., D(m) outputs encryptions of m, or, D(·) samples public encryption keys.

Our observation

Common ground for many applications of piO:

▶ e.g., D(m) outputs encryptions of m, or, D(·) samples public encryption keys.

► **Approach:** reduce number of hybrids by applying the ELF *on the* random tape of D to **sparsify** inputs

Recap

Doubly probabilistic IO

Construction

Introduction

Recap

Doubly probabilistic IO

Construction

Construction

- ► LHE_L = (GEN, ENC, DEC, EVAL) is a LHE scheme for depth-L circuits C, if
 - ► (GEN, ENC, DEC) is a PKE scheme, and
 - EVAL allows to homomorphically evaluate depth-L circuits on ciphertexts

- ► LHE_L = (GEN, ENC, DEC, EVAL) is a LHE scheme for depth-L circuits C, if
 - ► (GEN, ENC, DEC) is a PKE scheme, and
 - EVAL allows to homomorphically evaluate depth-L circuits on ciphertexts

 $m_1 m_2$

- ► LHE_L = (GEN, ENC, DEC, EVAL) is a LHE scheme for depth-L circuits C, if
 - ▶ (GEN, ENC, DEC) is a PKE scheme, and
 - EVAL allows to homomorphically evaluate depth-L circuits on ciphertexts

- ► LHE_L = (GEN, ENC, DEC, EVAL) is a LHE scheme for depth-L circuits C, if
 - (GEN, ENC, DEC) is a PKE scheme, and
 - EVAL allows to homomorphically evaluate depth-L circuits on ciphertexts

- ► LHE_L = (GEN, ENC, DEC, EVAL) is a LHE scheme for depth-L circuits C, if
 - ► (GEN, ENC, DEC) is a PKE scheme, and
 - EVAL allows to homomorphically evaluate depth-L circuits on ciphertexts

Introduction

Application LHE/FHE

- ▶ LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:

Application LHE/FHE

- ▶ LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:

Application LHE/FHE

- ▶ LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:

Conclusion

 We can build almost anything from i0.

But what can we do from polynomial i0?

> poly reduction to iO subexp reduction to iO piO abstraction

Introduction

Conclusion

 We can build almost anything from i0.

But what can we do from polynomial i0?

 And what can we do from polynomial i0 and ELFs?

