
The Usefulness of Sparsifiable Inputs:
How to Avoid Subexponential iO

Thomas Agrikola1 Geoffroy Couteau2 Dennis Hofheinz3

1Karlsruhe Institute of Technology (KIT), Germany
2IRIF, Paris-Diderot University, CNRS, France

3ETH Zurich, Switzerland

May 12, 2020



Introduction

Indistinguishability obfuscation (IO) is a method to transform a
program into an unintelligible one maintaining the original functionality.

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

Introduction Recap Doubly probabilistic IO Applications Conclusion 1/15



Applications of iO

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

Introduction Recap Doubly probabilistic IO Applications Conclusion 2/15



Applications of iO

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

Introduction Recap Doubly probabilistic IO Applications Conclusion 2/15



Related work on removing subexp. IO

I Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

I short signatures
I universal samplers
I non-interactive multiparty key exchange
I trapdoor one-way permutations
I multi-key functional encryption
I . . .

I But the supported operations are relatively restricted

Introduction Recap Doubly probabilistic IO Applications Conclusion 3/15



Related work on removing subexp. IO

I Previous approaches to avoid subexponential reductions to iO:
replace iO with functional encryption, [GS16; GPSZ17; LZ17;
KLMR18]

I short signatures
I universal samplers
I non-interactive multiparty key exchange
I trapdoor one-way permutations
I multi-key functional encryption
I . . .

I But the supported operations are relatively restricted

Introduction Recap Doubly probabilistic IO Applications Conclusion 3/15



Applications of iO

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

piO abstraction

Introduction Recap Doubly probabilistic IO Applications Conclusion 4/15



Applications of iO

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

poly reduction to iO

subexp reduction to iO

piO abstraction

Introduction Recap Doubly probabilistic IO Applications Conclusion 4/15



Probabilistic IO

iO compiles programs into
unintelligible ones, while

preserving their functionality.

piO compiles randomized
programs into deterministic
unintelligible ones, while

preserving their functionality.

P iO(P)
iO

x

P(x)

x

P(x)

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

functionally
equivalent

P piO(P)
piO

x

P(x ; r)

x

P(x ; r ′)

P1 ≈ P2

piO(P1) ≈ piO(P2)

piO piO

deterministic

“functionally
indistinguishable”

Introduction Recap Doubly probabilistic IO Applications Conclusion 5/15



Probabilistic IO

iO compiles programs into
unintelligible ones, while

preserving their functionality.

piO compiles randomized
programs into deterministic
unintelligible ones, while

preserving their functionality.

P iO(P)
iO

x

P(x)

x

P(x)

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

functionally
equivalent

P piO(P)
piO

x

P(x ; r)

x

P(x ; r ′)

P1 ≈ P2

piO(P1) ≈ piO(P2)

piO piO

deterministic

“functionally
indistinguishable”

Introduction Recap Doubly probabilistic IO Applications Conclusion 5/15



Probabilistic IO

iO compiles programs into
unintelligible ones, while

preserving their functionality.

piO compiles randomized
programs into deterministic
unintelligible ones, while

preserving their functionality.

P iO(P)
iO

x

P(x)

x

P(x)

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

functionally
equivalent

P piO(P)
piO

x

P(x ; r)

x

P(x ; r ′)

P1 ≈ P2

piO(P1) ≈ piO(P2)

piO piO

deterministic

“functionally
indistinguishable”

Introduction Recap Doubly probabilistic IO Applications Conclusion 5/15



Probabilistic IO

iO compiles programs into
unintelligible ones, while

preserving their functionality.

piO compiles randomized
programs into deterministic
unintelligible ones, while

preserving their functionality.

P iO(P)
iO

x

P(x)

x

P(x)

P1 ≡ P2

iO(P1) ≈ iO(P2)

iO iO

functionally
equivalent

P piO(P)
piO

x

P(x ; r)

x

P(x ; r ′)

P1 ≈ P2

piO(P1) ≈ piO(P2)

piO piO

deterministic

“functionally
indistinguishable”

Introduction Recap Doubly probabilistic IO Applications Conclusion 5/15



Why does piO require subexponential iO?

I Programs are only required to be “functionally indistinguishable”

I Captures a vast class of programs, e.g.

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

I Strategy due to Canetti et al., [CLTV15]:
I derive random coins from input x via PRF(K , x)

r := PRF(x)

return P(x ; r)

iO piO(P)

I use iO to obfuscate this deterministic program

Introduction Recap Doubly probabilistic IO Applications Conclusion 6/15



Why does piO require subexponential iO?

I Programs are only required to be “functionally indistinguishable”

I Captures a vast class of programs, e.g.

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

I Strategy due to Canetti et al., [CLTV15]:
I derive random coins from input x via PRF(K , x)

r := PRF(x)

return P(x ; r)

iO piO(P)

I use iO to obfuscate this deterministic program

Introduction Recap Doubly probabilistic IO Applications Conclusion 6/15



Why does piO require subexponential iO?

I Programs are only required to be “functionally indistinguishable”

I Captures a vast class of programs, e.g.

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

I Strategy due to Canetti et al., [CLTV15]:
I derive random coins from input x via PRF(K , x)

r := PRF(x)

return P(x ; r)

iO piO(P)

I use iO to obfuscate this deterministic program

Introduction Recap Doubly probabilistic IO Applications Conclusion 6/15



Why does piO require subexponential iO?

I Programs are only required to be “functionally indistinguishable”

I Captures a vast class of programs, e.g.

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

I Strategy due to Canetti et al., [CLTV15]:
I derive random coins from input x via PRF(K , x)

r := PRF(x)

return P(x ; r)

iO piO(P)

I use iO to obfuscate this deterministic program

Introduction Recap Doubly probabilistic IO Applications Conclusion 6/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Construction of piO due to Canetti et al., [CLTV15]

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

r := PRF(x)

return P(x ; r)

piO construction:

I But iO security can only be applied if circuits behave fully
identically

I in our example, P1 and P2 behave very differently

 direct (polynomial) reduction to iO won’t work

I Use a “one-input-at-a-time” hybrid argument for all possible inputs
I this includes the randomness

 Our goal: reduce number of hybrids to a polynomial amount

Introduction Recap Doubly probabilistic IO Applications Conclusion 7/15



Main tool – Extremely lossy functions

I Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two
indistinguishable modes:

injective mode
image size exponential

extremely lossy mode
image size polynomial

I exist from exponential DDH

I We believe that some sort of (sub)exponential assumption is
inherent for probabilistic iO

I ELFs can be used to push this subexponentiality to a much more
well-understood assumption

Introduction Recap Doubly probabilistic IO Applications Conclusion 8/15



Main tool – Extremely lossy functions

I Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two
indistinguishable modes:

injective mode
image size exponential

extremely lossy mode
image size polynomial

I exist from exponential DDH

I We believe that some sort of (sub)exponential assumption is
inherent for probabilistic iO

I ELFs can be used to push this subexponentiality to a much more
well-understood assumption

Introduction Recap Doubly probabilistic IO Applications Conclusion 8/15



Main tool – Extremely lossy functions

I Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two
indistinguishable modes:

injective mode
image size exponential

extremely lossy mode
image size polynomial

I exist from exponential DDH

I We believe that some sort of (sub)exponential assumption is
inherent for probabilistic iO

I ELFs can be used to push this subexponentiality to a much more
well-understood assumption

Introduction Recap Doubly probabilistic IO Applications Conclusion 8/15



First try

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

x = ELF(x)

r := PRF(x)

return P(x ; r)

I First try: reduce number of hybrids by applying the ELF on the
input x

I But pre-processing the program input x with an ELF will not
preserve the expected functionality of the circuit

Introduction Recap Doubly probabilistic IO Applications Conclusion 9/15



First try

P1(x ; r)

return Enc(pk, x ; r)
≈

P2(x ; r)

return Enc(pk, 0; r)

Example:

x = ELF(x)

r := PRF(x)

return P(x ; r)

I First try: reduce number of hybrids by applying the ELF on the
input x

I But pre-processing the program input x with an ELF will not
preserve the expected functionality of the circuit

Introduction Recap Doubly probabilistic IO Applications Conclusion 9/15



Our observation

I Common ground for many applications of piO:

D(m)

piO(P)

x
inputs x come from
distributions D(m)

I e.g., D(m) outputs encryptions of m,
or, D(·) samples public encryption keys.

I Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs

Introduction Recap Doubly probabilistic IO Applications Conclusion 10/15



Our observation

I Common ground for many applications of piO:

D(m)

piO(P)

x
inputs x come from
distributions D(m)

I e.g., D(m) outputs encryptions of m,
or, D(·) samples public encryption keys.

I Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs

Introduction Recap Doubly probabilistic IO Applications Conclusion 10/15



Our observation

I Common ground for many applications of piO:

D(m)

piO(P)

x
inputs x come from
distributions D(m)

I e.g., D(m) outputs encryptions of m,
or, D(·) samples public encryption keys.

I Approach: reduce number of hybrids by applying the ELF on the
random tape of D to sparsify inputs

Introduction Recap Doubly probabilistic IO Applications Conclusion 10/15



Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

Introduction Recap Doubly probabilistic IO Applications Conclusion 11/15



Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

Introduction Recap Doubly probabilistic IO Applications Conclusion 11/15



Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

Introduction Recap Doubly probabilistic IO Applications Conclusion 11/15



Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

Introduction Recap Doubly probabilistic IO Applications Conclusion 11/15



Doubly-Probabilistic IO

I Our framework: doubly-probabilistic IO (dpiO)

D(m)

piO(P)

x

dpiOD(P)

D(m)

crs

auxx

1-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

dpiOD(P)

crs

D(m1)

aux1x1

D(m2)

aux2x2

2-source dpiO

CRS model

compiled
input sampler

certifies that
x is valid

obfuscation
depends on

input sampler D

Introduction Recap Doubly probabilistic IO Applications Conclusion 11/15



Construction

(x1, aux1)
valid wrt. D?

(x2, aux2)
valid wrt. D?

return ⊥

r := PRF(x1, x2)

return
P(x1, x2; r)

no

no

yes

yes

iO dpiOD(P) dpiOD(P)

D(m1)

x1 := D(m1; ELF(r1))

aux1 ← “NIZK-proof”

return (x1, aux1)

D(m1; r1)

aux1x1

D(m2)

x2 := D(m2; ELF(r2))

aux2 ← “NIZK-proof”

return (x2, aux2)

D(m2; r2)

aux2x2 number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible mi is small)

Introduction Recap Doubly probabilistic IO Applications Conclusion 12/15



Construction

(x1, aux1)
valid wrt. D?

(x2, aux2)
valid wrt. D?

return ⊥

r := PRF(x1, x2)

return
P(x1, x2; r)

no

no

yes

yes

iO dpiOD(P) dpiOD(P)

D(m1)

x1 := D(m1; ELF(r1))

aux1 ← “NIZK-proof”

return (x1, aux1)

D(m1; r1)

aux1x1

D(m2)

x2 := D(m2; ELF(r2))

aux2 ← “NIZK-proof”

return (x2, aux2)

D(m2; r2)

aux2x2 number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible mi is small)

Introduction Recap Doubly probabilistic IO Applications Conclusion 12/15



Construction

(x1, aux1)
valid wrt. D?

(x2, aux2)
valid wrt. D?

return ⊥

r := PRF(x1, x2)

return
P(x1, x2; r)

no

no

yes

yes

iO dpiOD(P) dpiOD(P)

D(m1)

x1 := D(m1; ELF(r1))

aux1 ← “NIZK-proof”

return (x1, aux1)

D(m1; r1)

aux1x1

D(m2)

x2 := D(m2; ELF(r2))

aux2 ← “NIZK-proof”

return (x2, aux2)

D(m2; r2)

aux2x2 number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible mi is small)

Introduction Recap Doubly probabilistic IO Applications Conclusion 12/15



Construction

(x1, aux1)
valid wrt. D?

(x2, aux2)
valid wrt. D?

return ⊥

r := PRF(x1, x2)

return
P(x1, x2; r)

no

no

yes

yes

iO dpiOD(P) dpiOD(P)

D(m1)

x1 := D(m1; ELF(r1))

aux1 ← “NIZK-proof”

return (x1, aux1)

D(m1; r1)

aux1x1

D(m2)

x2 := D(m2; ELF(r2))

aux2 ← “NIZK-proof”

return (x2, aux2)

D(m2; r2)

aux2x2 number of valid inputs
only polynomial
when ELF is lossy

(we need that number
of possible mi is small)

Introduction Recap Doubly probabilistic IO Applications Conclusion 12/15



Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec

Introduction Recap Doubly probabilistic IO Applications Conclusion 13/15



Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec

Introduction Recap Doubly probabilistic IO Applications Conclusion 13/15



Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec

Introduction Recap Doubly probabilistic IO Applications Conclusion 13/15



Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec

Introduction Recap Doubly probabilistic IO Applications Conclusion 13/15



Leveled Homomorphic Encryption

I LHEL = (Gen,Enc,Dec,Eval) is a LHE scheme for depth-L
circuits C , if

I (Gen,Enc,Dec) is a PKE scheme, and

I Eval allows to homomorphically evaluate depth-L circuits on
ciphertexts

m1 m2

c1 c2

Enc Enc

EvalC C

=Dec

Introduction Recap Doubly probabilistic IO Applications Conclusion 13/15



Application LHE/FHE

I LHE construction due to Canetti et al., [CLTV15]

I one NAND gate is evaluated as follows:

a1 := Decsk1
(C1)

a2 := Decsk1
(C2)

return Encpk2
(a1∧a2)

Eval∧

Encpk1
(m1) Encpk1

(m2)

C1 C2

piO

use compiled input samplers

produce output with
compiled input sampler

for next level

Introduction Recap Doubly probabilistic IO Applications Conclusion 14/15



Application LHE/FHE

I LHE construction due to Canetti et al., [CLTV15]

I one NAND gate is evaluated as follows:

a1 := Decsk1
(C1)

a2 := Decsk1
(C2)

return Encpk2
(a1∧a2)

Eval∧

Encpk1
(m1) Encpk1

(m2)

C1 C2

piO

use compiled input samplers

produce output with
compiled input sampler

for next level

Introduction Recap Doubly probabilistic IO Applications Conclusion 14/15



Application LHE/FHE

I LHE construction due to Canetti et al., [CLTV15]

I one NAND gate is evaluated as follows:

a1 := Decsk1
(C1)

a2 := Decsk1
(C2)

return Encpk2
(a1∧a2)

Eval∧

Encpk1
(m1) Encpk1

(m2)

(C1, aux1) (C2, aux2)

dpiOEncpk1

use compiled input samplers

produce output with
compiled input sampler

for next level

Introduction Recap Doubly probabilistic IO Applications Conclusion 14/15



Conclusion

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

I And what can we do
from polynomial iO
and ELFs?

poly reduction to iO

subexp reduction to iO

piO abstraction

subexp iO plus ELF

Introduction Recap Doubly probabilistic IO Applications Conclusion 15/15



Conclusion

iO

[G
G

H
R

S
+

1
3

]
F

u
n

ct
io

n
a

l
en

cr
yp

ti
o

n

[C
sW

19;
A

C
IJS20]

Succinct

adaptive
M

P
C

[SW14]

Deniableencryption

[CLTV15]

Fully

homomorphic

encryption

[D
H

R
W

16
]

Sp
oo

ky
en

cr
yp

ti
on

[D
N

1
8

]
U

n
iversa

l
p

ro
xy

re-en
cryp

tio
n

[B
G

I16]

H
om

om
orphic

secret
sharing

[FHHL18]

Graded encodingschemes

[KLW15]
IO for Turing

machines

I We can build almost
anything from iO.

I But what can we do
from polynomial iO?

I And what can we do
from polynomial iO
and ELFs?

poly reduction to iO

subexp reduction to iO

piO abstraction

subexp iO plus ELF

Introduction Recap Doubly probabilistic IO Applications Conclusion 15/15


	Introduction
	Recap
	Doubly probabilistic IO
	Applications
	Conclusion

