The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO

Thomas Agrikola ${ }^{1} \quad$ Geoffroy Couteau ${ }^{2}$ Dennis Hofheinz ${ }^{3}$
${ }^{1}$ Karlsruhe Institute of Technology (KIT), Germany
${ }^{2}$ IRIF, Paris-Diderot University, CNRS, France
${ }^{3}$ ETH Zurich, Switzerland

Introduction

Indistinguishability obfuscation (IO) is a method to transform a program into an unintelligible one maintaining the original functionality.

Applications of iO

- We can build almost anything from iO.

- We can build almost anything from iO.
- But what can we do from polynomial i0?

Related work on removing subexp. IO

- Previous approaches to avoid subexponential reductions to iO : replace iO with functional encryption, [GS16; GPSZ17; LZ17; KLMR18]
- short signatures
- universal samplers
- non-interactive multiparty key exchange
- trapdoor one-way permutations
- multi-key functional encryption

Related work on removing subexp. IO

- Previous approaches to avoid subexponential reductions to iO : replace iO with functional encryption, [GS16; GPSZ17; LZ17; KLMR18]
- short signatures
- universal samplers
- non-interactive multiparty key exchange
- trapdoor one-way permutations
- multi-key functional encryption
- ...
- But the supported operations are relatively restricted
- We can build almost anything from iO.
- But what can we do from polynomial i0?

- We can build almost anything from iO.
- But what can we do from polynomial i0?

| poly reduction to io $\quad \square$ |
| :--- | :--- | :--- |
| subexp reduction to io |
| piO abstraction |

Probabilistic IO

iO compiles programs into unintelligible ones, while preserving their functionality.

Probabilistic IO

iO compiles programs into unintelligible ones, while preserving their functionality.

functionally
equivalent

Probabilistic IO

iO compiles programs into unintelligible ones, while
preserving their functionality.
piO compiles randomized programs into deterministic unintelligible ones, while preserving their functionality.

functionally
equivalent

Probabilistic IO

iO compiles programs into unintelligible ones, while
preserving their functionality.
piO compiles randomized programs into deterministic unintelligible ones, while preserving their functionality.

Why does piO require subexponential i0?

- Programs are only required to be "functionally indistinguishable"

Why does piO require subexponential i0?

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.
$\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \quad \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}$

Why does piO require subexponential i0?

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.
$\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \quad \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}$
- Strategy due to Canetti et al., [CLTV15]:
- derive random coins from input x via $\operatorname{PRF}(K, x)$

Why does piO require subexponential i0?

- Programs are only required to be "functionally indistinguishable"
- Captures a vast class of programs, e.g.
$\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \quad \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}$
- Strategy due to Canetti et al., [CLTV15]:
- derive random coins from input x via $\operatorname{PRF}(K, x)$

- use iO to obfuscate this deterministic program

Construction of piO due to Canetti et al., [CLTV15]

Example:

$$
\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)}
$$

$$
\underline{P_{2}(x ; r)}
$$

$$
\text { return } \operatorname{ENC}(p k, 0 ; r)
$$

- But iO security can only be applied if circuits behave fully identically
- in our example, P_{1} and P_{2} behave very differently

Construction of piO due to Canetti et al., [CLTV15]

Example:

$$
\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}
$$

- But iO security can only be applied if circuits behave fully identically
- in our example, P_{1} and P_{2} behave very differently
\rightsquigarrow direct (polynomial) reduction to iO won't work

Construction of piO due to Canetti et al., [CLTV15]

piO construction:

return $P(x ; r)$

Example:

```
P
return }\operatorname{ENC}(pk,x;r
P2(x;r)
return ENC(pk,0;r)
```

- But iO security can only be applied if circuits behave fully identically
- in our example, P_{1} and P_{2} behave very differently
\rightsquigarrow direct (polynomial) reduction to iO won't work
- Use a "one-input-at-a-time" hybrid argument for all possible inputs
- this includes the randomness

Construction of piO due to Canetti et al., [CLTV15]

piO construction:

return $P(x ; r)$

Example:
$\underline{P_{1}(x ; r)}$
$\underline{P_{2}(x ; r)}$
return $\operatorname{Enc}(p k, 0 ; r)$

- But iO security can only be applied if circuits behave fully identically
- in our example, P_{1} and P_{2} behave very differently
\rightsquigarrow direct (polynomial) reduction to iO won't work
- Use a "one-input-at-a-time" hybrid argument for all possible inputs
- this includes the randomness
\rightsquigarrow Our goal: reduce number of hybrids to a polynomial amount

Main tool - Extremely lossy functions

- Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

extremely lossy mode image size polynomial

Main tool - Extremely lossy functions

- Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

extremely lossy mode image size polynomial
- exist from exponential DDH
- Extremely lossy functions (ELFs) due to Zhandry, [Zha16] offer two indistinguishable modes:

extremely lossy mode image size polynomial
- exist from exponential DDH
- We believe that some sort of (sub)exponential assumption is inherent for probabilistic iO
- ELFs can be used to push this subexponentiality to a much more well-understood assumption

First try

Example:
$\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}$

- First try: reduce number of hybrids by applying the ELF on the input x

First try

Example:
$\frac{P_{1}(x ; r)}{\text { return } \operatorname{ENC}(p k, x ; r)} \approx \frac{P_{2}(x ; r)}{\text { return } \operatorname{ENC}(p k, 0 ; r)}$

- First try: reduce number of hybrids by applying the ELF on the input x
- But pre-processing the program input x with an ELF will not preserve the expected functionality of the circuit

Our observation

- Common ground for many applications of piO:

$$
\operatorname{piO}(P)
$$

inputs x come from
distributions $\mathcal{D}(m)$

Our observation

- Common ground for many applications of piO:

- e.g., $\mathcal{D}(m)$ outputs encryptions of m, or, $\mathcal{D}(\cdot)$ samples public encryption keys.

Our observation

- Common ground for many applications of piO:

- e.g., $\mathcal{D}(m)$ outputs encryptions of m, or, $\mathcal{D}(\cdot)$ samples public encryption keys.
- Approach: reduce number of hybrids by applying the ELF on the random tape of \mathcal{D} to sparsify inputs

Doubly-Probabilistic IO

- Our framework: doubly-probabilistic IO (dpiO)

Doubly-Probabilistic IO

- Our framework: doubly-probabilistic IO (dpiO)

Doubly-Probabilistic IO

- Our framework: doubly-probabilistic IO (dpiO)

- Our framework: doubly-probabilistic IO (dpiO)

Doubly-Probabilistic IO

- Our framework: doubly-probabilistic IO (dpiO)

Construction

Construction

Construction

Construction

Leveled Homomorphic Encryption

- $\mathrm{LHE}_{L}=($ Gen, Enc, Dec, Eval) is a LHE scheme for depth- L circuits C, if
- (Gen, Enc, Dec) is a PKE scheme, and
- Eval allows to homomorphically evaluate depth- L circuits on ciphertexts

Leveled Homomorphic Encryption

- $\mathrm{LHE}_{L}=($ Gen, Enc, Dec, Eval) is a LHE scheme for depth- L circuits C, if
- (Gen, Enc, Dec) is a PKE scheme, and
- Eval allows to homomorphically evaluate depth- L circuits on ciphertexts

Leveled Homomorphic Encryption

- $\mathrm{LHE}_{L}=($ Gen, Enc, Dec, Eval) is a LHE scheme for depth- L circuits C, if
- (Gen, Enc, Dec) is a PKE scheme, and
- Eval allows to homomorphically evaluate depth- L circuits on ciphertexts

Leveled Homomorphic Encryption

- $\mathrm{LHE}_{L}=($ Gen, Enc, Dec, Eval) is a LHE scheme for depth- L circuits C, if
- (Gen, Enc, Dec) is a PKE scheme, and
- Eval allows to homomorphically evaluate depth- L circuits on ciphertexts

Leveled Homomorphic Encryption

- $\mathrm{LHE}_{L}=($ Gen, Enc, Dec, Eval) is a LHE scheme for depth- L circuits C, if
- (Gen, Enc, Dec) is a PKE scheme, and
- Eval allows to homomorphically evaluate depth- L circuits on ciphertexts

Application LHE/FHE

- LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:

Application LHE/FHE

- LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:

Application LHE/FHE

- LHE construction due to Canetti et al., [CLTV15]
- one NAND gate is evaluated as follows:
use compiled input samplers

Conclusion

- We can build almost anything from iO.
- But what can we do from polynomial iO?

[^0]
Conclusion

- We can build almost anything from iO.
- But what can we do from polynomial i0?
- And what can we do from polynomial io and ELFs?

| poly reduction to iO | \square |
| :--- | :--- | :--- |
| subexp reduction to iO | \square |
| piO abstraction | |
| subexp iO plus ELF | |

[^0]: poly reduction to io
 subexp reduction to io \square
 piO abstraction

