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2-party secure computation

Alice with private input 
a

Bob with private input 
b
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Problem:  

Two parties, Alice and Bob, with private inputs, a and b, want to 
compute c = f(a,b) without revealing extra info on the private inputs. 



Solution:  

Design an interactive protocol for Alice and Bob such that, at the end 
of its execution, they learn c = f(a,b) and nothing else.  

2-party secure computation

Alice with private input 
a

Bob with private input 
b
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Active security: executing the protocol in presence of a maliciously party is as secure 
as sending inputs to a trusted party who computes and returns only the output. 



• Common: the function f is represented as 
•  binary circuit  
•  circuit over a finite field 

2-party secure computation over a ring
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f : ( )n x ( )m  ! ( )uℤ2k ℤ2k ℤ2k

• This work: f is represented as an arithmetic circuit over the ring   
(integers modulo 2k)

ℤ2k



Why focus on ? 

Integer arithmetic on standard CPUs is done modulo 2k  (eg, 32/64 bits), 
so an MPC protocol design that mirrors this can: 

• simplify implementation  
(no need for modular arithmetic or to compensate modular  
reduction)  

• use optimizations that are possible/done for CPU computations and 
that are often expensive to emulate modulo p.  

ℤ2k
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MPC over a ring

Cramer et al,  
actively-secure MPC 
with honest majority 

(black-box feasibility).

Damgård et al, 
compiler from passive 
to active security for 

any ring. Small number 
of corrupted players. 

SPDZ2k, 
(Cramer et al, Damgård 
et al. S&P 2019) n-party 

actively-secure MPC 
protocol over  in the 
preprocessing model 
(based on OT) with 
dishonest majority.

ℤN

Overdrive2k 
(Orsini et al) n-party 
actively-secure MPC 

protocol over  in the 
preprocessing model 
(based on SHE) with 
dishonest majority.

ℤ2k

Eurocrypt 
2003

Esorics 2008 Crypto 
2018

CT-RSA 
2020
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Sharemind, 
(Bogdanov et al, Araki et 

al. CCS2016) 3-party 
passively-secure protocol 
over  with 1 corruption. ℤ2k

Ishai et al,  
2-party actively-
secure protocols 

(black-box 
feasibility & 
efficiency)

TCC 2009



Our contribution
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MonZa 
Efficient 2-party actively-secure protocol over  in the preprocessing modelℤ2k

Everything solved? Nope… 
Challenge: design a ZK proof of correct multiplication. Stay tuned!

• Preprocessing (new!): efficient generation of random triples and random elements 
via the Joye-Libert encryption scheme 

1. linearly  homomorphic  
2. works naturally with elements in  and many instances with the same 

plaintext space 
3. efficient: fast encryption/decryption and small rate 

For example, decrypting a 120-bit plaintext using a 2048-bit modulus takes 4.8 ms (the 
equivalent with Paillier's scheme takes 9 to 5 ms, if exploiting CRT). 

4. no need of ZK proofs of plaintext knowledge/range-proofs

ℤ2k

• Online phase: a la SPDZ2k



Our contribution
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MonZa 
Efficient 2-party actively-secure protocol over  in the preprocessing modelℤ2k

• Implemented in C, benchmarks on two servers Intel Xeon 8124M CPU runningat 3.0 GHz
• Throughput: 

Latency (ms) 0.5 (LAN)        17 (WAN) 100 (WAN)

Triples/sec 19 18 17

Rand values/sec 134 132 121

input bit-length = 64 
computational security = 112 bits 
statistical security = 56 bits 
batch size = 1000

★Notice (computational complexity): the pre-processing phase of MonZa is asymmetric 
(Alice has to decrypt, but Bob   uses only faster operations)  

MonZa can be used for applications in the server-client model, 
  (one party has less computational power than the other one). 



SPDZ-like protocol
• Additive secret-sharing: to hide the inputs and store the intermediate results.    

share(a) = (a1 , a2)  with a1 + a2 = a 
 

• Information-theoretic MAC: to guarantee active security 

 MAC(a) =  Δ  a = m(a)1+ m(a)2 
   
Δ = Δ1 + Δ2 , global random MAC-key. 

⋅
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Used in the SPDZ family for computation over a field, 
adapted to work for computation over the ring  by Cramer et al (Crypto 2018).ℤ2k



SPDZ2k - value representation

 Δ random value in  (fixed for the protocol) shared as Δ = Δ1 + Δ2 mod 2k+s 

• a’ in   such that 
a’ = a mod 2k, a’ = a1+ a2 mod 2k+s, m(a)1+ m(a)2 =  Δ a’ mod 2k+s

ℤ2s

ℤ2k+s

⋅

MAC key share: Δ1 (fixed) 

Shares in  : a1 , b1 

MAC shares: m(a)1 , m(b)1

ℤ2k+s

MAC key share: Δ2 (fixed) 

Shares in : a2 , b2 

MAC shares: m(a)2 , m(b)2

ℤ2k+s
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Key idea: to securely compute over , share and authenticate over  ℤ2k ℤ2k+s



SPDZ2k - online phase
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Both the MAC and the secret-sharing scheme are homomorphic, so linear 
operations can be easily computed with no interaction!  
Compute a + b mod 2k:

MAC key share: Δ1 (fixed) 
shares: a1 + b1 
MAC shares: m(a)1 + m(b)1

MAC key share: Δ2 (fixed) 
shares: a2 + b2 
MAC shares: m(a)2 + m(b)2



SPDZ2k - online phase 
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Both the MAC and the secret-sharing scheme are homomorphic, so linear 
operations can be easily computed with no interaction!  
Compute a + b mod 2k:

Multiplication is harder, it needs a random triple: x, y and z random elements 
(in shared & authenticated form) such that z = x  y ⋅
Given a triple, computing a  b mod 2k can be done using Beaver’s formula: 

a  b = (a+x)  (b+y) + (a+x)  y + (b+y)  y + z 

opened values 

⋅
⋅ ⋅ ⋅ ⋅

x1 , y1 , z1 
m(x)1 , m(y)1 , m(z)1 

x2 , y2 , z2 
m(x)2 , m(y)2 , m(z)2 



Preprocessing model
Random triples (and other correlated randomness) are created during a 
preprocessing phase (no inputs).

Pre-processing (using PKC)

On-line (fast arithmetic ops)

Correlated 
randomness

inputs outputs

13



Triple construction
1. Take x and y at random  
 (easy, each party choses its share at random)  
 x = x1 + x2 mod 2k+s   ,   y = y1 + y2 mod 2k+s 

     and compute shares of MAC(x) = Δ  x mod 2k+s and MAC(y) = Δ  y mod 2k+s 

2. Compute the shares of z = x  y mod 2k+s 

3. Compute the shares of MAC(z) = Δ  z mod 2k+s

⋅ ⋅

⋅

⋅
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z2
Mult(x1  y2) 

z1 + z2 = x1  y2 
⋅

⋅z1

For all compute, we need a protocol for multiplying two secret values!

x1 y2



Multiplication of secret values 

1) ︎ Linearly-homomorphic encryption (e.g., BeDOZa,Overdrive) 
• ZK proofs of plaintext knowledge (and range-proofs) 
• ZK proofs of correct multiplication (BeDOZa) or “SPDZ-sacrifice” 
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2) Somewhat homomorphic encryption (e.g., SPDZ, Overdrive2k)  
• ZK proofs of plaintext knowledge (and plaintext range) 
• Relatively expensive computation, RAM-intense 

3) Oblivious transfer (e.g., Mascot, SPDZ2k) 
• ︎Cheap computation with OT extension, but bandwidth intense   
• ︎Need to mitigate selective failure 



• The message space is  
• The public key is (N, g), where N = pq and g is an element of maximal order in 
( )* and whose Jacobi symbol is 1 

JacN(g) = Legp(g) × Legq(g) = (g(p-1)/2 mod p) × (g(q-1)/2 mod q) 
  

• To encrypt m ∈ , choose a random x ∈ ( )*  and set  

C = gm  x2^n mod N 

ℤ2n

ℤN

ℤ2n ℤN

⋅

Our approach
16

Use Joye-Libert (JL) scheme! 
(linearly-homomorphic encryption)



Mult(x,y)                               
Alice with key pk1, sk1 

Input: x 

Bob with keys pk1  
Input: y

C 

A = Encpk1(x) check A, sample r  
and compute  

C = y  A + Encpk1(r) 

z2 = - r

⋅

compute  
 z1 = Decsk1(C)
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Security for Bob: easy!

Correctness:  C = Encpk1(x y+r) and z1 + z2 = Decsk1(Encpk1(x y+r))-r = x y mod 2n⋅ ⋅ ⋅

Security for Alice: Bob needs to prove that the ciphertext C is computed in the 
correct way via a ZK proof π proving C = y A + Encpk1(r) and B = Encpk2(y) (y and 
r private inputs). 
 

⋅

verify π 

π
compute π 

(Gilboa-like protocol)

Encpk2(y)



Challenge: 
Design π, the ZK proof for correct multiplication with JL! 

18

No such protocol exists for JL ! 

• Overdrive’s approach needs an encryption with enhanced 
CPA (i.e., non-linear operations on ciphertexts are not 
possible) 

• Standard Schnorr-like protocol techniques do not work due to 
the message space not being a field (or ). 
In  there are several and efficiently-findable noninvertible 
elements, so novel techniques needed to prove soundness! 

ℤpq
ℤ2n



Goal: ZK-proof for correct multiplication with  
JL scheme
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Bob’s witness:  messages y and r in   
Public inputs: ciphertexts A, B and C 
Statement: C = y A + Encpk1(r) and B = Encpk2(y) 

ℤ2n

⋅

For the sake of simplicity, in this talk I’ll focus on:  
ZK-proof of knowledge for a JL plaint text 

Bob’s witness:  messages m in  
Public inputs: ciphertext C  
Statement: C = Enc(m)

ℤ2n



ZK-proof for JL scheme
Bob’s witness:  messages m in  
Public inputs: ciphertext C  
Statement: C = Enc(m) = gm x2^n mod N 

A Schnorr-like protocol goes like this:

ℤ2n

⋅
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S = Enc(s)

esample e in ℤ2s

z ,y

sample s and w 
S = gs  w2^n  mod N⋅

gz y2^n = S Ce  mod N ?⋅ ⋅

compute 
z = s + m e mod 2n 
y = gt w xe mod N 

with t s.t. t 2n = s+m e-z 

⋅
⋅ ⋅

⋅



ZK-proof for JL scheme

Soundness:   
if Bob can answer to two challenges e ≠ e’, then 
m is computed as m = (z - z’) (e - e’)-1 mod 2n.⋅
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Problem: in  the value e - e’≠ 0 can be non invertible! ℤ2n

Conclusion:  
to prove over  we need to work with JL with a larger message space,  !  

This is not an efficiency problem, ciphertext length stays the same!
ℤ2n ℤ2n+s

Solution: we show that g.c.d.( e - e’, 2n ) = 2t  for some t ≤ s < n 
and how to extract n-s bits of the message m.  

e
z



Triple construction – all together 
Parties have MAC-key shares, Δ1 and Δ2, and input shares 
x = x1 + x2 mod 2n , y = y1 + y2 mod 2n 

1. Run Mult(Δi,x3-i) and Mult(Δi,y3-i) with i=1,2 to compute MAC(x) and MAC(y) 
2. Run Mult(x1,y2) and Mult(x2,y1) to compute z1 + z2 = x y mod 2n 

3. Run Mult(Δi,z3-i) with i=1,2 to compute MAC(z)

⋅

Notice: 
• we need two extra ZK proofs to prove that a party uses the correct value in step 3 

(variant of the ZK proof of correct multiplication) 
• “SPDZ sacrifice” is not needed!
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Bandwidth
k = bit size of the inputs 
s = stat. security parameter  
N = ciphertext bit length  

1 triple = 78 N + 18 (k+2s) bits sent between Alice and Bob  
(reduced to 56 N + 18 (k+2s) using the random-oracle)
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For example, for 80-bit computational security and s = 40, < 70 kbit for a triple in Z2^128.

Cost in kbit



Future work
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• Extension to n parties 

• Design batch verifications for the ZK-proofs of correct multiplication 

• Exploit JL unique properties to design sub-protocols (e.g., secure comparison)



Thanks for the attention!
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https://eprint.iacr.org/2019/211


