
Dario Catalano1, Mario Di Raimondo1, Dario Fiore2 and
Irene Giacomelli3

1 Università di Catania,
2 IMDEA Software Institute,
3 Protocol Labs.

MonZa:
fast maliciously-secure 2-party
computation on the ring ℤ2k

International Conference on Practice and Theory of Public-Key Cryptography (PKC) 2020

1

2-party secure computation

Alice with private input
a

Bob with private input
b

2

Problem:

Two parties, Alice and Bob, with private inputs, a and b, want to
compute c = f(a,b) without revealing extra info on the private inputs.

Solution:

Design an interactive protocol for Alice and Bob such that, at the end
of its execution, they learn c = f(a,b) and nothing else.

2-party secure computation

Alice with private input
a

Bob with private input
b

3

Active security: executing the protocol in presence of a maliciously party is as secure
as sending inputs to a trusted party who computes and returns only the output.

• Common: the function f is represented as
• binary circuit
• circuit over a finite field

2-party secure computation over a ring

4

f : ()n x ()m ! ()uℤ2k ℤ2k ℤ2k

• This work: f is represented as an arithmetic circuit over the ring
(integers modulo 2k)

ℤ2k

Why focus on ?

Integer arithmetic on standard CPUs is done modulo 2k (eg, 32/64 bits),
so an MPC protocol design that mirrors this can:

• simplify implementation
(no need for modular arithmetic or to compensate modular
reduction)

• use optimizations that are possible/done for CPU computations and
that are often expensive to emulate modulo p.

ℤ2k

5

MPC over a ring

Cramer et al,
actively-secure MPC
with honest majority

(black-box feasibility).

Damgård et al,
compiler from passive
to active security for

any ring. Small number
of corrupted players.

SPDZ2k,
(Cramer et al, Damgård
et al. S&P 2019) n-party

actively-secure MPC
protocol over in the
preprocessing model
(based on OT) with
dishonest majority.

ℤN

Overdrive2k
(Orsini et al) n-party
actively-secure MPC

protocol over in the
preprocessing model
(based on SHE) with
dishonest majority.

ℤ2k

Eurocrypt
2003

Esorics 2008 Crypto
2018

CT-RSA
2020

6

Sharemind,
(Bogdanov et al, Araki et

al. CCS2016) 3-party
passively-secure protocol
over with 1 corruption. ℤ2k

Ishai et al,
2-party actively-
secure protocols

(black-box
feasibility &
efficiency)

TCC 2009

Our contribution

7

MonZa
Efficient 2-party actively-secure protocol over in the preprocessing modelℤ2k

Everything solved? Nope…
Challenge: design a ZK proof of correct multiplication. Stay tuned!

• Preprocessing (new!): efficient generation of random triples and random elements
via the Joye-Libert encryption scheme

1. linearly homomorphic
2. works naturally with elements in and many instances with the same

plaintext space
3. efficient: fast encryption/decryption and small rate

For example, decrypting a 120-bit plaintext using a 2048-bit modulus takes 4.8 ms (the
equivalent with Paillier's scheme takes 9 to 5 ms, if exploiting CRT).

4. no need of ZK proofs of plaintext knowledge/range-proofs

ℤ2k

• Online phase: a la SPDZ2k

Our contribution

8

MonZa
Efficient 2-party actively-secure protocol over in the preprocessing modelℤ2k

• Implemented in C, benchmarks on two servers Intel Xeon 8124M CPU runningat 3.0 GHz
• Throughput:

Latency (ms) 0.5 (LAN) 17 (WAN) 100 (WAN)

Triples/sec 19 18 17

Rand values/sec 134 132 121

input bit-length = 64
computational security = 112 bits
statistical security = 56 bits
batch size = 1000

★Notice (computational complexity): the pre-processing phase of MonZa is asymmetric
(Alice has to decrypt, but Bob uses only faster operations)

MonZa can be used for applications in the server-client model,
 (one party has less computational power than the other one).

SPDZ-like protocol
• Additive secret-sharing: to hide the inputs and store the intermediate results.

share(a) = (a1 , a2) with a1 + a2 = a

• Information-theoretic MAC: to guarantee active security

 MAC(a) = Δ a = m(a)1+ m(a)2

Δ = Δ1 + Δ2 , global random MAC-key.

⋅

9

Used in the SPDZ family for computation over a field,
adapted to work for computation over the ring by Cramer et al (Crypto 2018).ℤ2k

SPDZ2k - value representation

 Δ random value in (fixed for the protocol) shared as Δ = Δ1 + Δ2 mod 2k+s

• a’ in such that
a’ = a mod 2k, a’ = a1+ a2 mod 2k+s, m(a)1+ m(a)2 = Δ a’ mod 2k+s

ℤ2s

ℤ2k+s

⋅

MAC key share: Δ1 (fixed)

Shares in : a1 , b1

MAC shares: m(a)1 , m(b)1

ℤ2k+s

MAC key share: Δ2 (fixed)

Shares in : a2 , b2

MAC shares: m(a)2 , m(b)2

ℤ2k+s

10

Key idea: to securely compute over , share and authenticate over ℤ2k ℤ2k+s

SPDZ2k - online phase

11

Both the MAC and the secret-sharing scheme are homomorphic, so linear
operations can be easily computed with no interaction!
Compute a + b mod 2k:

MAC key share: Δ1 (fixed)
shares: a1 + b1
MAC shares: m(a)1 + m(b)1

MAC key share: Δ2 (fixed)
shares: a2 + b2
MAC shares: m(a)2 + m(b)2

SPDZ2k - online phase

12

Both the MAC and the secret-sharing scheme are homomorphic, so linear
operations can be easily computed with no interaction!
Compute a + b mod 2k:

Multiplication is harder, it needs a random triple: x, y and z random elements
(in shared & authenticated form) such that z = x y ⋅
Given a triple, computing a b mod 2k can be done using Beaver’s formula:

a b = (a+x) (b+y) + (a+x) y + (b+y) y + z

opened values

⋅
⋅ ⋅ ⋅ ⋅

x1 , y1 , z1
m(x)1 , m(y)1 , m(z)1

x2 , y2 , z2
m(x)2 , m(y)2 , m(z)2

Preprocessing model
Random triples (and other correlated randomness) are created during a
preprocessing phase (no inputs).

Pre-processing (using PKC)

On-line (fast arithmetic ops)

Correlated
randomness

inputs outputs

13

Triple construction
1. Take x and y at random
 (easy, each party choses its share at random)
 x = x1 + x2 mod 2k+s , y = y1 + y2 mod 2k+s

 and compute shares of MAC(x) = Δ x mod 2k+s and MAC(y) = Δ y mod 2k+s

2. Compute the shares of z = x y mod 2k+s

3. Compute the shares of MAC(z) = Δ z mod 2k+s

⋅ ⋅

⋅

⋅

14

z2
Mult(x1 y2)

z1 + z2 = x1 y2
⋅

⋅z1

For all compute, we need a protocol for multiplying two secret values!

x1 y2

Multiplication of secret values

1) ︎ Linearly-homomorphic encryption (e.g., BeDOZa,Overdrive)
• ZK proofs of plaintext knowledge (and range-proofs)
• ZK proofs of correct multiplication (BeDOZa) or “SPDZ-sacrifice”

15

2) Somewhat homomorphic encryption (e.g., SPDZ, Overdrive2k)
• ZK proofs of plaintext knowledge (and plaintext range)
• Relatively expensive computation, RAM-intense

3) Oblivious transfer (e.g., Mascot, SPDZ2k)
• ︎Cheap computation with OT extension, but bandwidth intense
• ︎Need to mitigate selective failure

• The message space is
• The public key is (N, g), where N = pq and g is an element of maximal order in
()* and whose Jacobi symbol is 1

JacN(g) = Legp(g) × Legq(g) = (g(p-1)/2 mod p) × (g(q-1)/2 mod q)

• To encrypt m ∈ , choose a random x ∈ ()* and set

C = gm x2^n mod N

ℤ2n

ℤN

ℤ2n ℤN

⋅

Our approach
16

Use Joye-Libert (JL) scheme!
(linearly-homomorphic encryption)

Mult(x,y)
Alice with key pk1, sk1

Input: x

Bob with keys pk1
Input: y

C

A = Encpk1(x) check A, sample r
and compute

C = y A + Encpk1(r)

z2 = - r

⋅

compute
 z1 = Decsk1(C)

17

Security for Bob: easy!

Correctness: C = Encpk1(x y+r) and z1 + z2 = Decsk1(Encpk1(x y+r))-r = x y mod 2n⋅ ⋅ ⋅

Security for Alice: Bob needs to prove that the ciphertext C is computed in the
correct way via a ZK proof π proving C = y A + Encpk1(r) and B = Encpk2(y) (y and
r private inputs).

⋅

verify π

π
compute π

(Gilboa-like protocol)

Encpk2(y)

Challenge:
Design π, the ZK proof for correct multiplication with JL!

18

No such protocol exists for JL !

• Overdrive’s approach needs an encryption with enhanced
CPA (i.e., non-linear operations on ciphertexts are not
possible)

• Standard Schnorr-like protocol techniques do not work due to
the message space not being a field (or).
In there are several and efficiently-findable noninvertible
elements, so novel techniques needed to prove soundness!

ℤpq
ℤ2n

Goal: ZK-proof for correct multiplication with
JL scheme

19

Bob’s witness: messages y and r in
Public inputs: ciphertexts A, B and C
Statement: C = y A + Encpk1(r) and B = Encpk2(y)

ℤ2n

⋅

For the sake of simplicity, in this talk I’ll focus on:
ZK-proof of knowledge for a JL plaint text

Bob’s witness: messages m in
Public inputs: ciphertext C
Statement: C = Enc(m)

ℤ2n

ZK-proof for JL scheme
Bob’s witness: messages m in
Public inputs: ciphertext C
Statement: C = Enc(m) = gm x2^n mod N

A Schnorr-like protocol goes like this:

ℤ2n

⋅

20

S = Enc(s)

esample e in ℤ2s

z ,y

sample s and w
S = gs w2^n mod N⋅

gz y2^n = S Ce mod N ?⋅ ⋅

compute
z = s + m e mod 2n
y = gt w xe mod N

with t s.t. t 2n = s+m e-z

⋅
⋅ ⋅

⋅

ZK-proof for JL scheme

Soundness:
if Bob can answer to two challenges e ≠ e’, then
m is computed as m = (z - z’) (e - e’)-1 mod 2n.⋅

21

Problem: in the value e - e’≠ 0 can be non invertible! ℤ2n

Conclusion:
to prove over we need to work with JL with a larger message space, !

This is not an efficiency problem, ciphertext length stays the same!
ℤ2n ℤ2n+s

Solution: we show that g.c.d.(e - e’, 2n) = 2t for some t ≤ s < n
and how to extract n-s bits of the message m.

e
z

Triple construction – all together
Parties have MAC-key shares, Δ1 and Δ2, and input shares
x = x1 + x2 mod 2n , y = y1 + y2 mod 2n

1. Run Mult(Δi,x3-i) and Mult(Δi,y3-i) with i=1,2 to compute MAC(x) and MAC(y)
2. Run Mult(x1,y2) and Mult(x2,y1) to compute z1 + z2 = x y mod 2n

3. Run Mult(Δi,z3-i) with i=1,2 to compute MAC(z)

⋅

Notice:
• we need two extra ZK proofs to prove that a party uses the correct value in step 3

(variant of the ZK proof of correct multiplication)
• “SPDZ sacrifice” is not needed!

22

Bandwidth
k = bit size of the inputs
s = stat. security parameter
N = ciphertext bit length

1 triple = 78 N + 18 (k+2s) bits sent between Alice and Bob
(reduced to 56 N + 18 (k+2s) using the random-oracle)

23

For example, for 80-bit computational security and s = 40, < 70 kbit for a triple in Z2^128.

Cost in kbit

Future work

24

• Extension to n parties

• Design batch verifications for the ZK-proofs of correct multiplication

• Exploit JL unique properties to design sub-protocols (e.g., secure comparison)

Thanks for the attention!

25

https://eprint.iacr.org/2019/211

