<sup>1</sup> Università di Catania, <sup>2</sup> IMDEA Software Institute, <sup>3</sup> Protocol Labs.

International Conference on Practice and Theory of Public-Key Cryptography (PKC) 2020

## MonZa: fast maliciously-secure 2-party computation on the ring $\mathbb{Z}_{2^k}$

Dario Catalano<sup>1</sup>, Mario Di Raimondo<sup>1</sup>, Dario Fiore<sup>2</sup> and Irene Giacomelli<sup>3</sup>





## 2-party secure computation

### Two parties, Alice and Bob, with private inputs, a and b, want to compute c = f(a,b) without revealing extra info on the private inputs.









## 2-party secure computation

### Design an interactive protocol for Alice and Bob such that, at the end of its execution, they learn c = f(a,b) and nothing else.

### Active security: executing the protocol in presence of a maliciously party is as secure as sending inputs to a trusted party who computes and returns only the output.





## 2-party secure computation over a ring





## • <u>Common</u>: the function f is represented as

## • This work: f is represented as an arithmetic circuit over the ring $\mathbb{Z}_{2^k}$ (integers modulo 2<sup>k</sup>)

### binary circuit • circuit over a finite field

## $f: (\mathbb{Z}_{2^k})^n \times (\mathbb{Z}_{2^k})^m \rightarrow (\mathbb{Z}_{2^k})^u$



## Why focus on $\mathbb{Z}_{\gamma k}$ ?

Integer arithmetic on standard CPUs is done modulo 2<sup>k</sup> (eg, 32/64 bits), so an MPC protocol design that mirrors this can:

- reduction)

• simplify implementation (no need for modular arithmetic or to compensate modular

 use optimizations that are possible/done for CPU computations and that are often expensive to emulate modulo p.



## MPC over a ring





Cramer et al, actively-secure MPC with honest majority (black-box feasibility).

### Sharemind,

(Bogdanov et al, Araki et al. CCS2016) 3-party passively-secure protocol over  $\mathbb{Z}_{2^k}$  with 1 corruption.

### Esorics 2008

TCC 2009

### Ishai et al,

2-party activelysecure protocols (black-box feasibility & efficiency)

### SPDZ2k,

(Cramer et al, Damgård et al. S&P 2019) n-party actively-secure MPC protocol over  $\mathbb{Z}_N$  in the preprocessing model (based on OT) with dishonest majority.

**Overdrive2k** (Orsini et al) n-party actively-secure MPC protocol over  $\mathbb{Z}_{2^k}$  in the preprocessing model (based on SHE) with dishonest majority.

Crypto 2018

**CT-RSA** 2020

### Damgård et al, compiler from passive to active security for any ring. Small number of corrupted players.



## Our contribution

## MonZa



### Efficient 2-party actively-secure protocol over $\mathbb{Z}_{2^k}$ in the preprocessing model

Online phase: a la SPDZ2k

via the Joye-Libert encryption scheme

1. linearly homomorphic

2. works naturally with elements in  $\mathbb{Z}_{2^k}$  and many instances with the same

plaintext space

3. efficient: fast encryption/decryption and small rate equivalent with Paillier's scheme takes 9 to 5 ms, if exploiting CRT).

4. no need of ZK proofs of plaintext knowledge/range-proofs

Challenge: design a ZK proof of correct multiplication. Stay tuned!



### Preprocessing (new!): efficient generation of random triples and random elements

# For example, decrypting a 120-bit plaintext using a 2048-bit modulus takes 4.8 ms (the

## Everything solved? Nope...



## Our contribution

## MonZa

- Throughput:





### Efficient 2-party actively-secure protocol over $\mathbb{Z}_{2^k}$ in the preprocessing model

## Implemented in C, benchmarks on two servers Intel Xeon 8124M CPU runningat 3.0 GHz

| cy (ms)    | 0.5 (LAN) | 17 (WAN) | 100 (WAN) |
|------------|-----------|----------|-----------|
| s/sec      | 19        | 18       | 17        |
| values/sec | 134       | 132      | 121       |

**★**Notice (computational complexity): the pre-processing phase of MonZa is asymmetric (Alice has to decrypt, but Bob uses only faster operations) MonZa can be used for applications in the server-client model, (one party has less computational power than the other one).



input bit-length = 64 computational security = 112 bits statistical security = 56 bits batch size = 1000

## SPDZ-like protocol

### • Additive secret-sharing: to hide the inputs and store the intermediate results.

## Information-theoretic MAC: to guarantee active security

## Used in the SPDZ family for computation over a field, adapted to work for computation over the ring $\mathbb{Z}_{2^k}$ by Cramer et al (Crypto 2018).

### $MAC(a) = \Delta \cdot a = m(a)_1 + m(a)_2$

 $\Delta = \Delta_1 + \Delta_2$ , global random MAC-key.

### share(a) = $(a_1, a_2)$ with $a_1 + a_2 = a_1$



## SPDZ2k - value representation

### **Key idea**: to securely compute over $\mathbb{Z}_{2^k}$ , share and authenticate over $\mathbb{Z}_{2^{k+s}}$

## $\Delta$ random value in $\mathbb{Z}_{2^s}$ (fixed for the protocol) shared as $\Delta = \Delta_1 + \Delta_2 \mod 2^{k+s}$ • a' in $\mathbb{Z}_{2^{k+s}}$ such that a' = a mod 2<sup>k</sup>, a' = $a_1$ + $a_2$ mod 2<sup>k+s</sup>, m(a)<sub>1</sub> + m(a)<sub>2</sub> = $\Delta \cdot a'$ mod 2<sup>k+s</sup>





MAC key share:  $\Delta_1$  (fixed) shares:  $a_1 + b_1$ MAC shares:  $m(a)_1 + m(b)_1$ 

## SPDZ2k - online phase

### Both the MAC and the secret-sharing scheme are homomorphic, so linear operations can be easily computed with no interaction!

Compute a + b mod 2<sup>k</sup>:









Multiplication is harder, it needs a random triple: x, y and z random elements (in shared & authenticated form) such that  $z = x \cdot y$ Given a triple, computing a  $\cdot$  b mod 2<sup>k</sup> can be done using Beaver's formula:  $a \cdot b = (a+x) \cdot (b+y) + (a+x) \cdot y + (b+y) \cdot y + z$ 

## SPDZ2k - online phase

operations can be easily computed with no interaction!

Compute a + b mod 2<sup>k</sup>:



## Both the MAC and the secret-sharing scheme are homomorphic, so linear

opened values

## Preprocessing model

### Random triples (and other correlated randomness) are created during a preprocessing phase (no inputs).







## Triple construction

- 1. Take x and y at random (easy, each party choses its share at random)  $x = x_1 + x_2 \mod 2^{k+s}$ ,  $y = y_1 + y_2 \mod 2^{k+s}$ and <u>compute</u> shares of MAC(x) =  $\Delta \cdot x \mod 2^{k+s}$  and MAC(y) =  $\Delta \cdot y \mod 2^{k+s}$ 2. <u>Compute</u> the shares of  $z = x \cdot y \mod 2^{k+s}$

- 3. <u>Compute</u> the shares of MAC(z) =  $\Delta \cdot z \mod 2^{k+s}$



## For all <u>compute</u>, we need a protocol for multiplying two secret values!



## Multiplication of secret values

### 1) Linearly-homomorphic encryption (e.g., BeDOZa, Overdrive) ZK proofs of plaintext knowledge (and range-proofs) • ZK proofs of correct multiplication (BeDOZa) or "SPDZ-sacrifice"

### 2) Somewhat homomorphic encryption (e.g., SPDZ, Overdrive2k) • ZK proofs of plaintext knowledge (and plaintext range) Relatively expensive computation, RAM-intense

## 3) **Oblivious transfer** (e.g., Mascot, SPDZ2k)

- Cheap computation with OT extension, but bandwidth intense
- Need to mitigate selective failure

# Our approach Use Joye-Libert (JL) scheme! (linearly-homomorphic encryption)

# • The message space is $\mathbb{Z}_{2^n}$ $(\mathbb{Z}_N)^*$ and whose Jacobi symbol is 1

• To encrypt  $m \in \mathbb{Z}_{2^n}$ , choose a random  $x \in (\mathbb{Z}_N)^*$  and set  $C = g^m \cdot x^{2^n} \mod N$ 

 $Jac_N(g) = Leg_p(g) \times Leg_q(g) = (g^{(p-1)/2} \mod p) \times (g^{(q-1)/2} \mod q)$ 

## • The public key is (N, g), where N = pq and g is an element of maximal order in











**Security for Alice**: Bob needs to prove that the ciphertext C is computed in the correct way via a ZK proof  $\pi$  proving C = y·A + Enc<sub>pk1</sub>(r) and B = Enc<sub>pk2</sub>(y) (y and r private inputs).

### **Security for Bob**: easy!

## Challenge: Design $\pi$ , the ZK proof for correct multiplication with JL!



### No such protocol exists for JL !

- possible)
- the message space not being a field (or  $\mathbb{Z}_{pq}$ ).

Overdrive's approach needs an encryption with enhanced CPA (i.e., non-linear operations on ciphertexts are not

Standard Schnorr-like protocol techniques do not work due to

In  $\mathbb{Z}_{2^n}$  there are several and efficiently-findable **noninvertible** elements, so novel techniques needed to prove soundness!

## Goal: ZK-proof for correct multiplication with JL scheme

**Bob's witness:** messages y and r in  $\mathbb{Z}_{2^n}$ Public inputs: ciphertexts A, B and C <u>Statement</u>:  $C = y \cdot A + Enc_{pk1}(r)$  and  $B = Enc_{pk2}(y)$ 

For the sake of simplicity, in this talk I'll focus on: ZK-proof of knowledge for a JL plaint text

Public inputs: ciphertext C <u>Statement</u>: C = Enc(m)

<u>Bob's witness</u>: messages m in  $\mathbb{Z}_{2^n}$ 









## ZK-proof for JL scheme

- **Bob's witness:** messages m in  $\mathbb{Z}_{2^n}$
- Public inputs: ciphertext C
- <u>Statement</u>:  $C = Enc(m) = g^m \cdot x^{2^n} \mod N$



### A Schnorr-like protocol goes like this:



Soundness: if Bob can answer to two challenges  $e \neq e'$ , then m is computed as  $m = (z - z') \cdot (e - e')^{-1} \mod 2^{n}$ .

<u>Solution</u>: we show that g.c.d.(e - e',  $2^n$ ) =  $2^t$  for some t  $\leq s < n$ and how to extract n-s bits of the message m.

to prove over  $\mathbb{Z}_{2^n}$  we need to work with JL with a larger message space,  $\mathbb{Z}_{2^{n+s}}$ ! This is not an efficiency problem, ciphertext length stays the same!

## ZK-proof for JL scheme

<u>Problem</u>: in  $\mathbb{Z}_{2^n}$  the value e - e' \neq 0 can be non invertible!





## **Conclusion**:



## Triple construction – all together

- Notice:

Parties have MAC-key shares,  $\Delta_1$  and  $\Delta_2$  and input shares  $x = x_1 + x_2 \mod 2^n$ ,  $y = y_1 + y_2 \mod 2^n$ 

1. Run Mult( $\Delta_i, x_{3-i}$ ) and Mult( $\Delta_i, y_{3-i}$ ) with i=1,2 to compute MAC(x) and MAC(y) 2. Run Mult( $x_1, y_2$ ) and Mult( $x_2, y_1$ ) to compute  $z_1 + z_2 = x \cdot y \mod 2^n$ 3. Run Mult( $\Delta_i, z_{3-i}$ ) with i=1,2 to compute MAC(z)

(variant of the ZK proof of correct multiplication) • "SPDZ sacrifice" is not needed!

## • we need two extra ZK proofs to prove that a party uses the correct value in step 3



## Bandwidth

k = bit size of the inputs s = stat. security parameter N = ciphertext bit length

1 triple = 78 N + 18 (k+2s) bits sent between Alice and Bob (reduced to 56 N + 18 (k+2s) using the random-oracle)

|          |      |     |    | $\mathbf{SPD}\mathbb{Z}_{2^k}$ |       | $\mathbf{Mon}\mathbb{Z}_{2^k}\mathbf{a}\ \mathbf{base}$ |       | $\mathbf{Mon}\mathbb{Z}_{2^k}\mathbf{a}$ optim. |       |
|----------|------|-----|----|--------------------------------|-------|---------------------------------------------------------|-------|-------------------------------------------------|-------|
| $S \mid$ | N    | k   | s  | triple                         | input | triple                                                  | input | triple                                          | input |
| 80       |      | 32  | 32 | 79.87                          | 3.17  | 81.60                                                   | 9.41  | 59.07                                           | 6.34  |
|          | 1024 | 64  | 40 | 177.41                         | 5.90  | 82.46                                                   | 9.50  | 59.94                                           | 6.43  |
|          |      | 128 | 40 | 362.75                         | 8.53  | 94.22                                                   | 10.86 | 68.70                                           | 7.38  |
| 112      |      | 32  | 32 | 79.87                          | 3.17  | 161.47                                                  | 18.62 | 116.42                                          | 12.48 |
|          | 2048 | 64  | 56 | 267.52                         | 10.03 | 162.91                                                  | 18.78 | 117.86                                          | 12.64 |
|          |      | 128 | 56 | 487.68                         | 13.68 | 164.06                                                  | 18.91 | 119.01                                          | 12.77 |
| 128      | 3072 | 32  | 32 | 79.87                          | 3.17  | 241.34                                                  | 27.84 | 173.76                                          | 18.62 |
|          |      | 64  | 64 | 319.49                         | 12.48 | 243.07                                                  | 28.03 | 175.49                                          | 18.82 |
|          |      | 128 | 64 | 557.06                         | 16.64 | 244.22                                                  | 28.16 | 176.64                                          | 18.94 |

(S: comp. sec. level; N: JL-schemes modulus; k: message bit-length; s: stat. sec. level) Cost in kbit

### For example, for 80-bit computational security and s = 40, < 70 kbit for a triple in Z2^128.

## Future work

- Extension to n parties
- Design batch verifications for the ZK-proofs of correct multiplication

# • Exploit JL unique properties to design sub-protocols (e.g., secure comparison)

## Thanks for the attention!



### https://eprint.iacr.org/2019/211