International Conference on Practice and Theory of Public-Key Cryptography (PKC) 2020

VionZa:
fast maliciously-secure 2-party

computation on the ring Z

Dario Catalano?, Mario Di Raimondo®, Dario Fiore2 and
Irene Giacomelli3

1 Universita di Catania,
2 IMDEA Software Institute,
3 Protocol Labs.

2-party secure computation

Problem:

Two parties, Alice and Bob, with private inputs, a and b, want to
compute ¢ = f(a,b) without revealing extra info on the private inputs.

/Alice with private input
d

@ob with private inpuh
b

2-party secure computation

Solution:

Design an interactive protocol for Alice and Bob such that, at the end
of its execution, they learn ¢ = f(a,b) and nothing else.

/Alice with private input /Bob with pl;ivate nput
d

o /

A SO =
Py e—. P d

: Active security: executing the protocol in presence of a maliciously party is as secure j
as sending inputs to a trusted party who computes and returns only the output.

2-party secure computation over a ring

 Common: the function f is represented as
* Dbinary circuit
 circuit over a finite field

- This work: f is represented as an arithmetic circuit over the ring Z
(Integers modulo 2k)

f (sz)” X (sz)m - (sz)“

S

2@

il

Why focus on Z,;?

Integer arithmetic on standard CPUs is done modulo 2k (eg, 32/64 bits),
so an MPC protocol design that mirrors this can:

» sSimplify implementation
(no need for modular arithmetic or to compensate modular
reduction)

* Use optimizations that are possible/done for CPU computations and
that are often expensive to emulate modulo p.

MPC over a ring

Sharemind,

(Bogdanov et al, Araki et
al. CCS2016) 3-party
passively-secure protocol

SPDZ2K,

(Cramer et al, Damgard
et al. S&P 2019) n-party
actively-secure MPC

protocol over Z,; in the
preprocessing model

Overdrive2k
(Orsini et al) n-party
actively-secure MPC

protocol over Z,; in the

preprocessing model

(based on OT) with
dishonest majority.

(based on SHE) with
dishonest majority.

over Z,, with 1 corruption.

Damgard et al,
compiler from passive
to active security for
any ring. Small number
of corrupted players.

Cramer et al,

actively-secure MPC
with honest majority
(black-box feasibility).

Ishal et al,
2-party actively-
secure protocols

(black-box
feasibility &
efficiency)

Our contribution

MonZa
Efficient 2-party actively-secure protocol over Z,: in the preprocessing model

* Online phase: a la SPDZ2k

* Preprocessing (new!): efficient generation of random triples and random elements
via the Joye-Libert encryption scheme

1. linearly homomorphic

2. works naturally with elements in Z,: and many instances with the same
plaintext space

3. efficient: fast encryption/decryption and small rate

For example, decrypting a 120-bit plaintext using a 2048-bit modulus takes 4.8 ms (the
equivalent with Paillier's scheme takes 9 to 5 ms, if exploiting CRT).

4. no need of ZK proofs of plaintext knowledge/range-proofs

Everything solved? Nope...
Challenge: design a ZK proof of correct multiplication. Stay tuned!

Our contribution

MonZa
Efficient 2-party actively-secure protocol over Z,.in the preprocessing model

Implemented in C, benchmarks on two servers Intel Xeon 8124M CPU runningat 3.0 GHz

» Throughput:
Latency (ms) 0.5 (LAN) 17 (WAN)100 (WAN)

Triples/sec 19 18 17 input bit-length = 64
computational security = 112 bits

statistical security = 56 bits

Rand values/sec 134 132 121
batch size = 1000

% Notice (computational complexity): the pre-processing phase of MonZa is asymmetric
(Alice has to decrypt, but Bob uses only faster operations)

— \lonZa can be used for applications in the server-client model,
(one party has less computational power than the other one).

SPD/Z-like protocol

* Additive secret-sharing: to hide the inputs and store the intermediate results.

share(a) = (a1, a2) withas +ax=a

 Information-theoretic MAC: to guarantee active security
MAC(a)= A-a=m(a);+ m(a);

A=A+ Ay, global random MAC-key.

J’ ’

Used in the SPDZ famlly for eomputatlon over a f|eId ;
j adapted to work for computatlon over the rlng sz by Cramer et aI (Crypto 2018)

SPDZ2kK - value representation

Key idea: to securely compute over Z,, share and authenticate over Z .,

A random value in Z,, (fixed for the protocol) shared as A = A1+ A2 mod 2k*s

e a’in Zykss such that
a =amod 2k, a = aq+ a, mod 2k*s, m(a)i+ m(a), = A-a mod 2k+s

N [

- re N

s

MAC key share: A4 (fixed) MAC key share: A, (fixed)
Shares in Zsis: a1, by Shares in Z - az , by

\MAC shares: m(a)s , m(b) / \MAC shares: m(a) , m(b)z/

SPDZ2k - online phase

Both the MAC and the secret-sharing scheme are homomorphic, so linear
operations can be easily computed with no interaction!

Compute a + b mod 2k

-

N 4 ro N

i

MAC key share: A1 (fixed) MAC key share: A\, (fixed)
shares: a, + D+ shares: a> + by

\MAC shares: m(a); + m(b); / \MAC shares: m(a), + m(b)zJ

SPDZ2k - online phase

Both the MAC and the secret-sharing scheme are homomorphic, so linear
operations can be easily computed with no interaction!

Compute a + b mod 2k:

-

N [ro N

i

X1, VY1, Z1 € X2, VY2, 72
m(X)1 , m(y)1, m(z) _— m(X)2 , m(y)z2, m(z):

o J - /

Multiplication Is harder, it needs a random triple: X, y and z random elements
(in shared & authenticated form) suchthatz=x -y

Given a triple, computing a - b mod 2k can be done using Beaver's formula:
a-b=(atx)- (bty) +(atx)-y+(bty)-y+z

opened values

Preprocessing model

Random triples (and other correlated randomness) are created during a
preprocessing phase (no inputs).

Pre-processing (using PKC)

_—)iInpUItS On-line (fast arithmetic ops) _)OUtPUtS

Triple construction

1. Take x and y at random
(easy, each party choses its share at random)
X = X1+ Xo mod 2kts |y =y, + vy, mod 2k*s

and compute shares of MAC(x) = A - x mod 2k*s and MAC(y) = A - y mod 2k+s
2. Compute the shares of z = x - y mod 2k#s

3. Compute the shares of MAC(z) = A - z mod 2k+s

. . « g S o e o _ O P X <o e M >4 . _g. : - ~ o e e o4 ~ .) FR e - g o . i o - S - . pae g 4 ~ : — ¢ - AN o e P . gy . .) - L - o) - .

. A ZNr I ks S { = R~ > ’ > S - S ! g~ - . J 75 = S — ° . - . e “— °_ 5 Lo . T M e -’5 - . - prs ‘ e » -’5 ’ - ag o ’, - | | 15 | ,

‘e = . A . & - . - - >y . - . - c v > . o - - P d . B - .. . L) =y - - . c o P = .- . o= - ° _ a. 2 Qe DT - - = : . . ~ .. - e’ e - LT e e, ¢ e . o - B s’ e T LT o - s s , o o

R 1 - = v oA ey Bea o ,. - ..-,- RE < ® m P AD A e S 14,.— W -7 (. > A SAL ‘.: o I , . 2 %, 5 ~ Y-S -,_-_,.’_-j.‘ .— o/ A AL '._’ oI I . S O ., RO I 'S, . »__,.,_-_'; .‘ ‘. ow O A0 N - -.—;,,_ Y 'A =2 > A w: s kD g ; e ?l-.""; ' . "‘ a0 X v T ;4”".; ' i AL ;4"’<<‘> "' -]
. .
| " ’
, ” -v
‘ . 1
T . . i
» .° | ‘
‘)
“ .
‘ “' ‘\. .
! 4
) ' ‘
). , | :
, -< \
.. “ ‘
5 , .
' l - o
‘ ' AN
‘ | . . . | | | ‘ (’ | o | ’ S = ' i P T - : e = . o Sees 2oL : & U, TR = s’ T AU " = 2 g~ P ‘ean?: *Vale o et DR - s~ e P 2N -\ o= D, e Veld L, B3N P Y- \ -\-'~ " " == S SO T.A | - YOO R TR Xy 3o SRR X 1\ v
' s i - = T il =Tt e 2 2 = b & < &I A o 3 YN MNYL N -F-a .’ o) WA a4 Ly <3 - & py VS -4 - - =~ g ‘- g’ - By o o AST- 8 ~LIPP - ol e oA f e LA ‘-2 A d - - o - Rl - RVELe 3 8 - o 8 <N AP BRI TS &S Y) 3 - - o Ty “mEN- o 4° - ~o 8 AN " I a4 5 - I A A = = - . - S AN, ot Il Ak N D TN QM
o - 4 _e TR ':,' 0 ”. = "‘; s -e Tev ST = "v” = YT e "' Ve IV &7 ,..'J =A o LN ‘Q 7z i - ,"’ = = gy 4 e « ‘Q = - A Y - / B T Te T NN . «es » b 4 N . o - . b SR S . _‘ . . T - <t 3 SIQ TEETTIT S e AN
- - - - - = . . - - . - - . = . = = . - - . > . - - = > - - . - . - = < = -.‘ - - - -~ - - - . - . . . = . \
L= o P ~ = . a . - "’ . L 'y @ 4 z - : T - -, . = - - o o . - = e . 'y @ 4 - g o~ - a . . . ° o = . - = < & . = - - 8 Vg ° - o ~ - 2 . L~ a2 g o - . ‘a3 \ S = - - - o o : L~ e <. a - . e - > o) o : . : : . | o | :

- : C = s

Multiplication of secret values

1) Linearly-homomorphic encryption (e.g., BeD0OZa,Overdrive)

» /K proofs of plaintext knowledge (and range-proofs)
» /K proofs of correct multiplication (BeDOZa) or "SPDZ-sacrifice”

2) Somewhat homomorphic encryption (e.qg., SPDZ, Overdrive2k)

» /K proofs of plaintext knowledge (and plaintext range)
» Relatively expensive computation, RAM-intense

3) Oblivious transfer (e.g., Mascot, SPDZ2k)
« Cheap computation with OT extension, but bandwidth intense

* Need to mitigate selective failure

Our approach

Use Joye-Libert (JL) scheme!
(linearly-hnomomorphic encryption)

- The message space is Z,,
* The public key is (N, g), where N = pq and g is an element of maximal order in

(Z) and whose Jacobi symbol is 1
Jacn(g) = Legp(g) * Legq(g) = (9> mod p) = (gle-1V2 mod q)

- To encrypt m € Z,,, choose a random x € (Z,)" and set

C=gm-x2'nmod N

Mult(x,y)

/ Alice with key pki, sk1\

Input: X

verify
compute

k Z1 = Decsk1(C) /

Correctness: C = Encpki(X-y+r) and z4 + zo = Decsk1(Encpk1(X-y+r))-r = X-y mod 2"

Security for Bob: easy!

Security for Alice: Bob needs to prove that the ciphertext C is computed in the
correct way via a ZK proof 1 proving C = y-A + Encpk1(r) and B = Encpk2(y) (Y and

r private inputs).

(Gilboa-like protocol)

EﬂCka(Y)
_

A= EnCpk1 (X)
— 5

C

-
TT

o

Bob with keys pki
Input: y

check A, sample r

and compute
C=vy-A+ Encpi(r)

compute 1T

Zo = -1

~

/

Challenge:
Design 1T, the ZK proof for correct multiplication with JL!

No such protocol exists for JL !

* QOverdrive's approach needs an encryption with enhanced
CPA (i.e., non-linear operations on ciphertexts are not
possible)

e\
« Standard Schnorr-like protocol techniques do not work due to
@ the message space not being a field (or qu).

In Z,, there are several and efficiently-findable noninvertible
elements, so novel techniques needed to prove soundness!

Goal: ZK-proof for correct multiplication with
JL scheme

Bob’s witness: messages y and rin Z,,

Public inputs: ciphertexts A, B and C
Statement: C = y-A + Encpk1(r) and B = Encpra(y)

For the sake of simplicity, in this talk I'll focus on:
ZK-proof of knowledge for a JL plaint text

Bob’s witness: messages m in Z,,

Public inputs: ciphertext C
Statement: C = Enc(m)

/K-proof for JL scheme

Bob’s withess: messages m in Z,,
Public inputs: ciphertext C

Statement: C = Enc(m) = gm-x2""mod N
A Schnorr-like protocol goes like this:
sample s and w
S=gs-w2n modN

sample e in £,

QZ-yZAH = S-Ce mod Ny

compute
Z=S+ m-e mod2n

\ y = gt-w-xe mod N/

withts.t.t 2 =s+m-e-z

/K-proof for JL scheme

- 9 N
Soundness:

If Bob can answer to two challenges e # €, then
m is computedas m=(z-z)-(e-¢e’)"mod 2"

-

Problem: in Z,, the value e - '# 0 can be non invertible!

Solution: we show that g.c.d.(e -¢e’, 2n) =2t forsomet<s<n
and how to extract n-s bits of the message m.

Conclusion:

to prove over Z,,we need to work with JL with a larger message space, Z .
This is not an efficiency problem, ciphertext length stays the same!

Triple construction — all together

 Parties have MAC-key shares, A1and A, and input shares |
X =X1+x2mod 20,y =y +y; mod 2

1. Run Mult(Ai,xs.i)) and Mult(A;,ys.i) with i=1,2 to compute MAC(x) and MAC(y)
2. Run Mult(x4,y2) and Mult(xz,y1) to compute z; + z, = x-y mod 2"
3. Run Mult(4,zs.) with i=1,2 to compute MAC(z)

Notice:

e we need two extra ZK proofs to prove that a party uses the correct value in step 3
(variant of the ZK proof of correct multiplication)

e “"SPD/Z sacrifice” is not needed!

Bandwidth

K = bit size of the inputs
s = stat. security parameter

N = ciphertext bit length

1 triple = 78 N + 18 (k+2s) bits sent between Alice and Bob

(reduced to 56 N + 18 (k+2s) using the random-oracle)

For example, for 80-bit computational security and s = 40, < 70 kbit for a triple in Z2"128.

SPDZ,k MonZ,ra base MonZ,ra optim.

S | IN| k s | triple input triple input triple input
S YA Y. 79.87 3.17 81.60 9.41 59.07 6.34
80 1024 64 40| 177.41 5.90 82.46 9.50 59.94 6.43
128 40| 362.75 8.93 94.22 10.86 68.70 7.38
32 32 79.87 3.17 161.47 18.62 116.42 12.48
112| 2048 64 56| 267.52 10.03 162.91 18.78 117.86 12.64
128 56| 487.68 13.68 164.06 18.91 119.01 12.77
32 32| 79.87 3.17| 241.34 27.84| 173.76 18.62
128 3072 64 64| 319.49 12.48 243.07 28.03 175.49 18.82
128 64| 557.06 16.64 244.22 28.16 176.64 18.94

Cost in kbit

(S: comp. sec. level; N: JL-schemes modulus; k: message bit-length; s: stat. sec. level)

Future work

 EXxtension to n parties
* Design batch verifications for the ZK-proofs of correct multiplication

» Exploit JL unique properties to design sub-protocols (e.g., secure comparison)

Thanks for the attention!

https://eprint.iacr.org/2019/211

