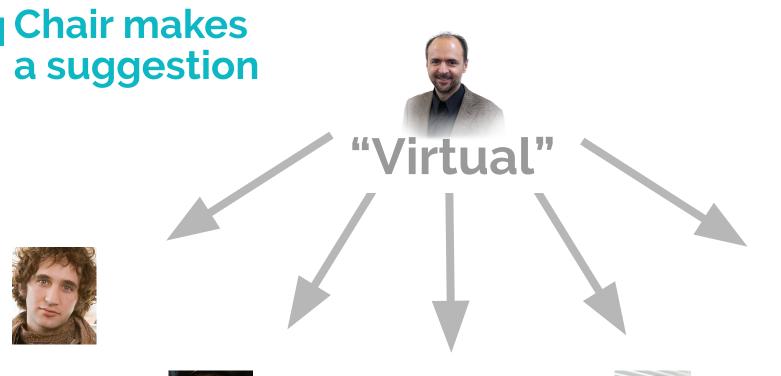
Sublinear-Round Byzantine Agreement under Corrupt Majority

Elaine Shi @ Cornell

Joint with T-H. Hubert Chan (HKU) & Rafael Pass (Cornell)


PKC'2021 Virtual or Physical?

Everyone decides

Virtual

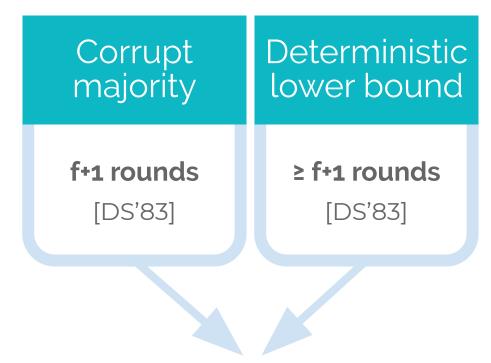
Some are unhappy (e.g., had papers rejected from pkc)

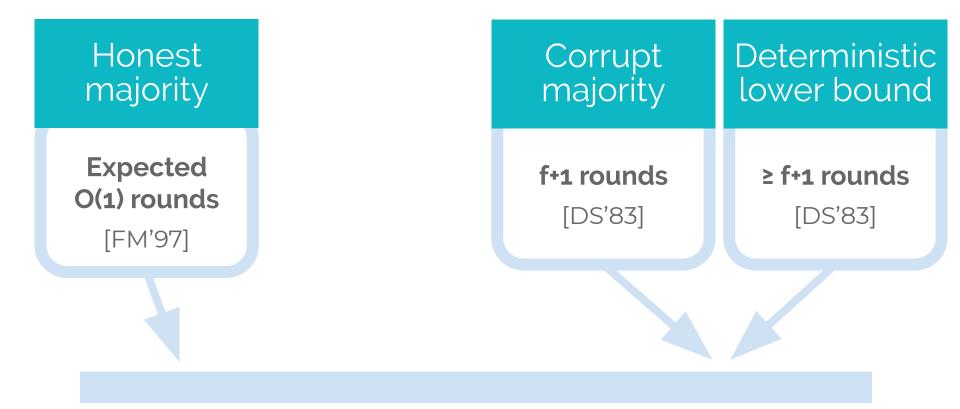
Consistency happy players agree on decision

Validity if chair happy, agree on chair's suggestion

[Lamport'82]

Consistency happy players agree on decision

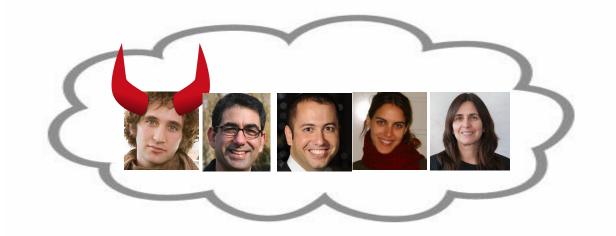

Validity if chair happy, agree on chair's suggestion

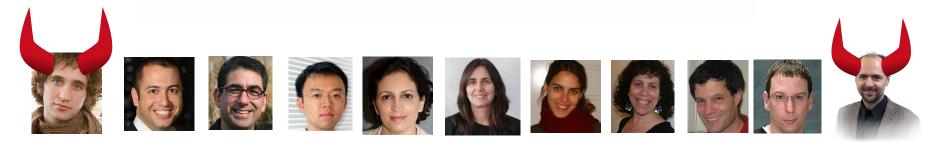

f: number of corrupt players

Corrupt majority

f+1 rounds

[DS'83]

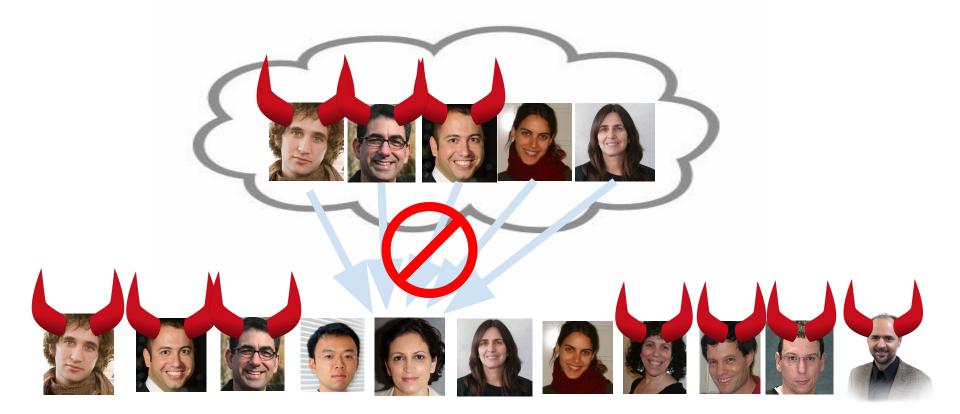



Honest majority	Corrupt majority	Deterministic lower bound
Expected O(1) rounds [FM'97]	f+1 rounds [DS'83]	≥ f+1 rounds [DS'83]

Honest majority	Corrupt majority	Corrupt majority	Deterministic lower bound
Expected O(1) rounds [FM'97]	Expected O(2f-n) rounds [GKKO'07, FN'09]	f+1 rounds [DS'83]	≥ f+1 rounds [DS'83]

Hard even for static corruption

Folklore committee election fails



Folklore committee election

Folklore committee election

Corrupt majority: majority voting fails

Hard even for static corruption

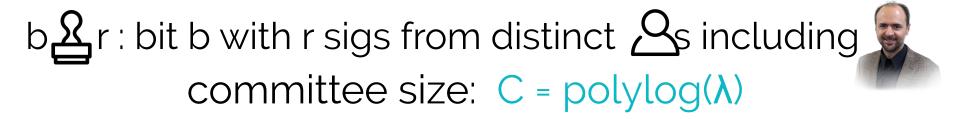
Nothing known for 51% corrupt

Our Result

Assume trusted setup and standard hardness assumptions, there exists poly-log round BB even in the presence of 99.9% weakly adaptive corruptions.

See paper for a more generalized statement.

Challenge 1


Convey decision to those outside the committee

Adaptive corruption of the committee

Challenge 2

2 Non-committee-members participate as non-voters

 $b\Delta r$: bit b with r sigs from distinct Δs including committee size: $C = polylog(\lambda)$

 $b \underline{\mathcal{A}}$ r : bit b with r sigs from distinct $\underline{\mathcal{A}}$ s including $\underline{\mathbb{S}}$ committee size: $C = polylog(\lambda)$

Round r = 1.. C:

Committee: if committee member j sees b A r if b not in E : add b to E, multicasts b A (r + 1) $b\Delta r$: bit b with r sigs from distinct Δs including committee size: $C = polylog(\lambda)$

Round o: Round o: multicasts b & 1

Round r = 1.. C:

add its own sig

Committee: if committee member j sees b 옵 r if b not in E_j : add b to E_j, multicasts b 옵 (r + 1) $b\Delta r$: bit b with r sigs from distinct Δs including committee size: $C = polylog(\lambda)$

Round r = 1... C:

Committee: if committee member j sees b A r if b not in E : add b to E, multicasts b A (r + 1)

Finally: player j outputs elem in E_i if its size is 1, else output 0

Lemma 1: if in round **r < C**, honest player j has b in its E_j, then in round **r+1**, every honest player i has b in E_i

Lemma 2: if in round C, honest player j has b in its E_j, then in round C, every honest player i has b in E_i

 $b \underline{\mathcal{A}}$ r : bit b with r sigs from distinct $\underline{\mathcal{A}}$ s including committee size: $C = polylog(\lambda)$ Phase o: Multicasts b A 1 **Phase r = 1.. C:** Relay round (everyone): if player i sees b & r if b not in E_i : add b to E_i , multicast b & r Voting round (committee): if committee member j sees b & r if b not in E_j : add b to E_j, multicasts b & (r + 1) Finally: player j outputs elem in E_i if its size is 1, else output 0

Challenge 1

Convey decision to those outside the committee

Adaptive corruption of the committee

Challenge 2

Adaptive corruption of the committee

Secret committee election

Challenge 2

Reveal membership on voting

Player j is member of the b-committee iff

Player j itself:

ρ, Π = VRF(sk_j, b) & ρ < D

Player j is member of the b-committee iff

Player j itself:

ρ, Π = VRF(sk_j, b) & ρ < D

Everyone else:

VRF.Vf(pk_j, b, ρ, Π) = 1 & ρ < D Membership in the two committees decided **independently**

Player j itself:

ρ, Π = VRF(sκ_j, b) & ρ < D

Everyone else:

VRF.Vf(pk_j, b, ρ, Π) = 1 & ρ < D bAr : bit b w/ r votes from distinct As including committee size: $C = polylog(\lambda)$ Phase o: 🔊 multicasts b 🕰 1 Phase $r = 1... polylog(\lambda)$: **Relay round:** if player i sees b & r if b not in E_i : add b to E_i , multicast b & r

Voting round: if player j sees b & r and is member of b-committee: if b not in E_j : add b to E_j, multicasts b & (r + 1)

Finally: player j outputs elem in E_j if its size is 1, else output 0

Open Questions and Ongoing Work

Can we achieve expected constant rounds with corrupt majority?

https://eprint.iacr.org/2020/590

Can we achieve a similar result in the strongly adaptive model?

Thank you! runting@gmail.com