Threshold Ring Signatures: New Security Definitions and Post-Quantum Security

Abida Haque, Alessandra Scafuro

North Carolina State University

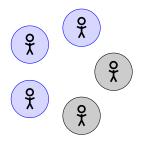
May 25, 2020

Problem Description

 Problem Description

 Current State of the Art

 Our Contribution

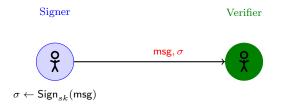

 Our Scheme

 Summary

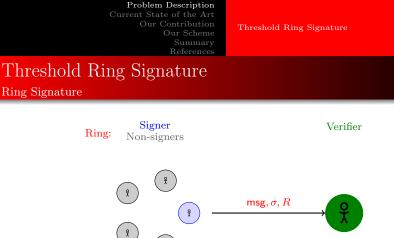
 References

Threshold Ring Signature
Main Definitions

Threshold ring signatures: t distinct parties anonymously sign on behalf of a ring of N public keys. The identity of the signers remains private (to any non-signers).

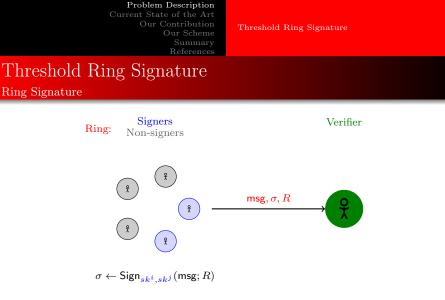

Problem Description urrent State of the Art

Our Contribution Our Scheme Summary References


Threshold Ring Signature

Threshold Ring Signature

Signature


• unforgeability

 $\sigma \gets \mathsf{Sign}_{\textit{sk}}(\mathsf{msg}; R)$

ç

- \bullet unforgeability
- \bullet anonymity

- \bullet unforgeability
- anonymity
- \bullet threshold

- Increased tolerance to misbehavior of users
- Suits decentralized settings
- Settings where you need a quorum.

- an ad-hoc "voting" mechanism for community projects posted on the blockchain
- \bullet Funds: \$

Weak Security Definitions Post-Quantum Security

Current State of the Art

Weak Security Definitions Post-Quantum Security

State of the Art

• Passive Security Definitions

- Post-Quantum Insecure
 - Hardness
 - Assumptions
 - 2 Techniques

Weak Security Definitions Post-Quantum Security

Threshold Ring Signature Setting

- Ad-hoc settings where the users can generate their keys independently, and join or leave the system at any time.
- Users could join the system with dishonestly generated keys.

- Only **passive** adversaries.
- Adversaries can only obtain honestly generated keys.
- Sometimes cannot even choose to add more (honest) keys (e.g., Bettaieb and Schrek (2013); Petzoldt et al. (2013)),
- Adversaries cannot corrupt parties (e.g. Okamoto et al. (2018); Petzoldt et al. (2013); Bettaieb and Schrek (2013)).
- Bender et al. (2006) observe that the above doesn't reflect the open settings of ring signatures.

References

Weak Security Definitions Post-Quantum Security

State of the Art

- Passive Security Definitions
 - passive adversaries
 - 2 no corruption
 - on adding of new honest keys

- Post-Quantum Insecure
 - Hardness
 - Assumptions
 - 2 Techniques

- Discrete log, factoring hardness assumptions are not secure against an attack from a quantum computer (Shor (1994)).
- Some constructions Melchor et al. (2011); Bettaieb and Schrek (2013); Cayrel et al. (2010); Petzoldt et al. (2013) use post-quantum secure hardness problems such as lattices or learning-with-errors.

Weak Security Definitions Post-Quantum Security

State of the Art

- Passive Security Definitions
 - passive adversaries
 - 2 no corruption
 - **③** no adding of new honest keys

- Post-Quantum Insecure
 - Non-PQ secure
 - problems
 - 2 Techniques

- Transform from Fiat and Shamir (1986) common, but security may not hold in the *quantum* setting (Boneh et al. (2011); Ambainis et al. (2014)).
- Quantum rewinding is not trivial (Watrous (2009); Ambainis et al. (2014)).
- Fiat-Shamir is post-quantum secure in certain situations (Liu and Zhandry (2019); Don et al. (2019)) but may not hold in general.

Weak Security Definitions Post-Quantum Security

Transformation

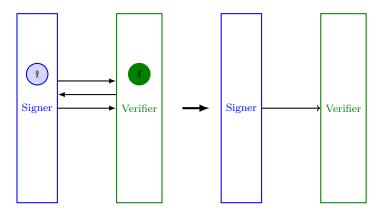


Figure: Transform an interactive protocol into a non-interactive one.

Problem Description Current State of the Art Our Contribution Our Scheme

Weak Security Definitions Post-Quantum Security

Rewinding

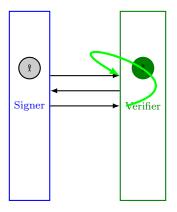
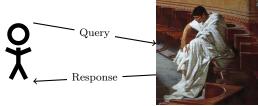



Figure: Prove scheme with rewinding. But a quantum adversary may notice!

Weak Security Definitions Post-Quantum Security

Quantum vs Classical Access ^{Classical}

On a single query, can only get a single response.

Weak Security Definitions Post-Quantum Security

Quantum vs Classical Access _{Quantum}

Can get a *superposition* of answers.

Can define all possible outputs using only a single query. This is why we use Unruh.

Weak Security Definitions Post-Quantum Security

State of the Art

- Passive Security Definitions
 - passive adversaries
 - 2 no corruption
 - on adding of new honest keys

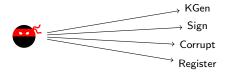
- Post-Quantum Insecure
 - Non-PQ secure problems
 - Fiat-Shamir is not PQ-secure in general.

Our Contribution

Definitions Post-Quantum Security

Our Contribution

- Definitions for unforgeability and anonymity with active adversaries.
- Post-quantum secure proof for a threshold ring signature.
 - generalize previous approaches and provide a black-box construction from any (post-quantum) trapdoor commitment scheme.
 - Uses Unruh Transformation to guarantee post-quantum security.



- Make a security model by giving adversary access to oracles.
- Captures active adversaries.
- Two security notions: unforgeability and anonymity.

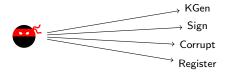
Definitions Post-Quantum Security

Anonymity and Unforgeability

Training: ask queries

Anonymity: *A* picks:

- message
- S_0, S_1 with respect to a ring R, where $|S_0| = |S_1| = t$.


 \mathcal{A} receives a signature from S_b (b = 0 or 1) and guesses b. S_0, S_1 uncorrupted. **Unforgeability:** \mathcal{A} produces

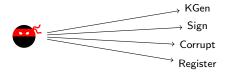
- message
- signature
- ring

Fewer than t corrupted members in R^* .

Problem Description Definitions Our Contribution References

Anonymity and Unforgeability

Training: ask queries


Anonymity: \mathcal{A} picks:

- message
- S_0, S_1 with respect to a ring R, where $|S_0| = |S_1| = t$.

 \mathcal{A} receives a signature from S_h (b = 0 or 1) and guesses b. S_0, S_1 uncorrupted.

- signature
- ring

Anonymity and Unforgeability

Training: ask queries

Anonymity: \mathcal{A} picks:

- message
- S_0, S_1 with respect to a ring R, where $|S_0| = |S_1| = t$.

 \mathcal{A} receives a signature from S_b (b = 0 or 1) and guesses b. S_0, S_1 uncorrupted.

Unforgeability: \mathcal{A} produces

- message
- signature
- ring

Fewer than t corrupted members in R^* .

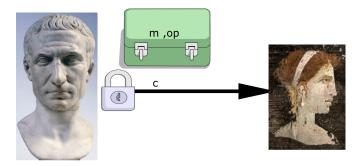
- Key Generation: Upon query from \mathcal{A} , the oracle creates private-public key pair and gives the public key to \mathcal{A} .
- Sign: A requests a signature on message and signers w.r.t. a ring. The oracle follows the signing algorithm with the secret keys that he controls. A must participate in the signing procedure if there are corrupted members.
- *Corrupt:* Oracle returns requested user's secret key to \mathcal{A} and updates list of corrupted users.
- *Register:* A provides public key to the oracle, who adds it to the ring and list of corrupted ring members.

Definitions Post-Quantum Security

Our Contribution

- Definitions for unforgeability and anonymity with active adversaries.
- Post-quantum secure proof for a threshold ring signature.
 - generalize previous approaches and provide a black-box construction from any (post-quantum) trapdoor commitment scheme.
 - Uses Unruh Transformation to guarantee post-quantum security.

- Black-box use of (post-quantum) Trapdoor Commitment Scheme
- We avoid rewinding by making all outputs part of the signature (Unruh (2015)).

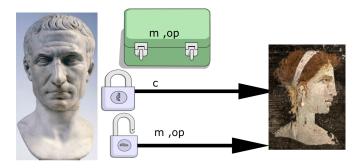

Building Blocks Overview of Scheme Overview of Security

Our Scheme

Building Blocks Overview of Scheme Overview of Security

Commitment Scheme

Hiding, Binding



Sender can commit to a message. Receiver cannot learn what the message is (hiding). Later sender can only open to the original message (binding).

Building Blocks Overview of Scheme Overview of Security

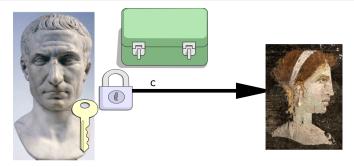
Commitment Scheme

Hiding, Binding

Sender can commit to a message. Receiver cannot learn what the message is (hiding). Later sender can only open to the original message (binding).

Building Blocks Overview of Scheme Overview of Security

Trapdoor

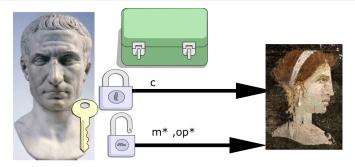


Knowing a trapdoor, it's possible to 'change your mind'.

Building Blocks Overview of Scheme Overview of Security

Trapdoor Commitment Scheme

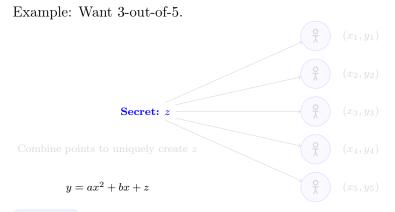
Trapdoor Indistinguishability



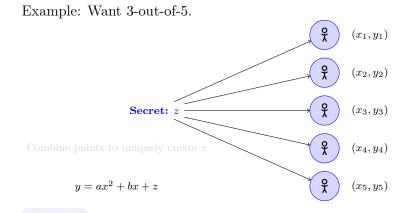
- With knowledge of a trapdoor t, sender can open a commitment to any message they like.
- Hiding, binding (w/o knowledge of trapdoor), and trapdoor indistinguishability.

Building Blocks Overview of Scheme Overview of Security

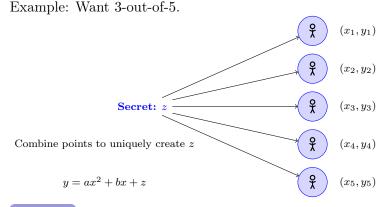
Trapdoor Commitment Scheme


Trapdoor Indistinguishability

- With knowledge of a trapdoor t, sender can open a commitment to any message they like.
- Hiding, binding (w/o knowledge of trapdoor), and trapdoor indistinguishability.

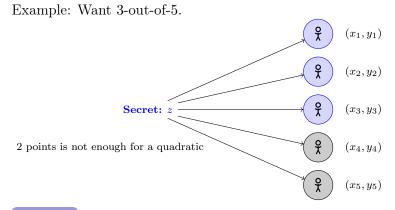

Building Blocks Overview of Scheme Overview of Security

Shamir Secret Sharing Graphic

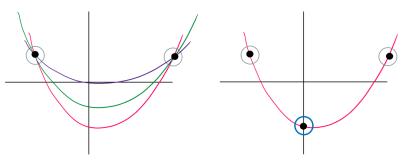

Building Blocks Overview of Scheme Overview of Security

Shamir Secret Sharing Graphic

Building Blocks Overview of Scheme Overview of Security

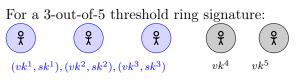

Shamir Secret Sharing Graphic

Description


Building Blocks Overview of Scheme Overview of Security

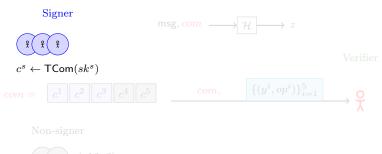
Shamir Secret Sharing Graphic

Building Blocks Overview of Scheme Overview of Security


Shamir Secret Sharing

- With 2 points there are lots of solutions to the quadratic polynomial.
- By adding the third point we uniquely define the polynomial.

Building Blocks **Overview of Scheme** Overview of Security



Where $vk^s = (pk^s, x^s)$.

Building Blocks **Overview of Scheme** Overview of Security

Template

 $\begin{pmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} \\ \frac{$

Building Blocks **Overview of Scheme** Overview of Security

Template

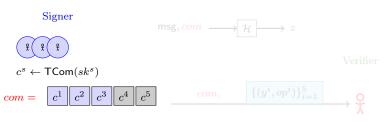
Non-signer

$$\fbox{(pk^q, ?)}$$

 $c^q, op^q \leftarrow \mathsf{Com}_{pk^q}(y^q)$

Building Blocks **Overview of Scheme** Overview of Security

Template

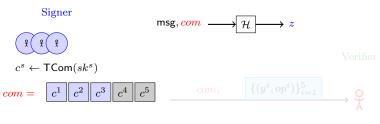

Non-signer

$$\fbox{(pk^q, ?)}$$

 $c^q, op^q \leftarrow \mathsf{Com}_{pk^q}(y^q)$

Building Blocks **Overview of Scheme** Overview of Security

Template

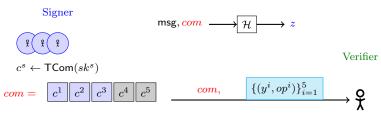

Non-signer

$$\textcircled{\ref{rescaled}{R}}(pk^q,\,?)$$

 $c^q, op^q \leftarrow \mathsf{Com}_{pk^q}(y^q)$

Building Blocks **Overview of Scheme** Overview of Security

Template


Non-signer

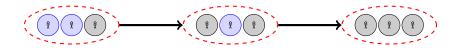
$$\textcircled{\ref{rescaled}{R}}(pk^q,\,?)$$

 $c^q, op^q \leftarrow \mathsf{Com}_{pk^q}(y^q)$

Building Blocks **Overview of Scheme** Overview of Security

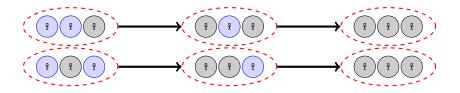
Template

Non-signer

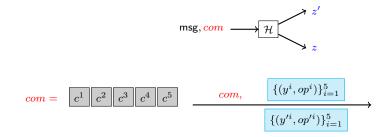

$$\fbox{(pk^q, ?)}$$

 $c^q, op^q \leftarrow \mathsf{Com}_{pk^q}(y^q)$

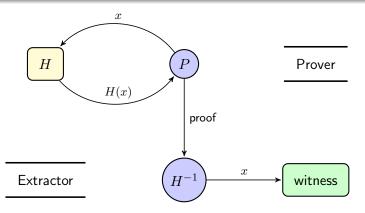
Building Blocks Overview of Scheme Overview of Security


Core Technique

- Swap every trapdoor commitment out with an honest commitment step-by-step.
- At the end signers and non-signers look perfectly alike!

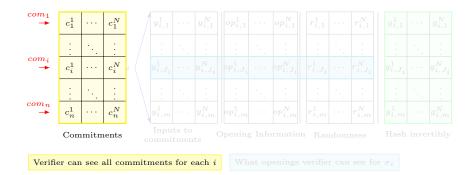

With all honest trapdoors two signatures look exactly alike.

Replacing a trapdoor commitment with an honest commitment is indistinguishable.



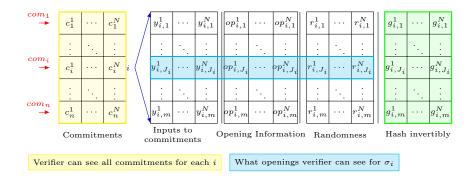
With all honest commitments use a forgery to break binding.

Building Blocks Overview of Scheme Overview of Security


Unruh Transformation

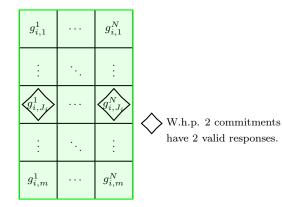
- make the RO invertible
- include all outputs in the proof

Building Blocks Overview of Scheme Overview of Security


Unruh Transformation

Instead of making a single commitment, make n commitments and answer m challenges.

Building Blocks Overview of Scheme **Overview of Security**


Unruh Transformation

Instead of making a single commitment, make n commitments and answer m challenges. \bigcirc

Building Blocks Overview of Scheme Overview of Security

Unforgeability

Summary

Summary

- First formal definitions for a *t*-out-of-*N* threshold ring signature scheme in the presence of active adversaries that leverage malicious keys in their attacks. Generalized the definitions of Bender et al. (2006) from 1-out-of-*N* ring signatures to threshold *t*-out-of-*N* ring signatures.
- Created a scheme which uses black-box trapdoor commitments, meaning that the parties can use any (post-quantum) trapdoor commitment scheme.
- First construction that is provably secure against quantum adversaries that have quantum access to the random oracle.

Questions for Future Research

- Can we use Fiat-Shamir for thring signatures in a way that's provably post-quantum secure?
- Can we make a post-quantum secure thring signature which has anonymity amongst signers?

The End

https://eprint.iacr.org/2020/135

Bibliography I

- Ambainis, A., Rosmanis, A., and Unruh, D. (2014). Quantum attacks on classical proof systems: The hardness of quantum rewinding. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 474–483. IEEE.
- Bender, A., Katz, J., and Morselli, R. (2006). Ring signatures: Stronger definitions, and constructions without random oracles. In *Theory of Cryptography Conference*, pages 60–79. Springer.
- Bettaieb, S. and Schrek, J. (2013). Improved lattice-based threshold ring signature scheme. In *International Workshop on Post-Quantum Cryptography*, pages 34–51. Springer.
- Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and Zhandry, M. (2011). Random oracles in a quantum world. In *International Conference* on the Theory and Application of Cryptology and Information Security, pages 41–69. Springer.
- Cayrel, P.-L., Lindner, R., Rückert, M., and Silva, R. (2010). A lattice-based threshold ring signature scheme. In *International Conference on Cryptology* and *Information Security in Latin America*, pages 255–272. Springer.

Bibliography II

- Don, J., Fehr, S., Majenz, C., and Schaffner, C. (2019). Security of the fiat-shamir transformation in the quantum random-oracle model. Cryptology ePrint Archive, Report 2019/190. https://eprint.iacr.org/2019/190.
- Fiat, A. and Shamir, A. (1986). How to prove yourself: Practical solutions to identification and signature problems. In Advances in Cryptology, CRYPTO 86, pages 186–194. Springer.
- Liu, Q. and Zhandry, M. (2019). Revisiting post-quantum fiat-shamir. Cryptology ePrint Archive, Report 2019/262. https://eprint.iacr.org/2019/262.
- Melchor, C. A., Cayrel, P.-L., Gaborit, P., and Laguillaumie, F. (2011). A new efficient threshold ring signature scheme based on coding theory. *IEEE Transactions on Information Theory*, 57(7):4833–4842.
- Okamoto, T., Tso, R., Yamaguchi, M., and Okamoto, E. (2018). A k-out-of-n ring signature with flexible participation for signers. *IACR Cryptology ePrint Archive*, 2018:728.
- Petzoldt, A., Bulygin, S., and Buchmann, J. (2013). A multivariate based threshold ring signature scheme. Applicable Algebra in Engineering, Communication and Computing, 24(3-4):255–275.

Bibliography III

- Shor, P. W. (1994). Polynomial time algorithms for discrete logarithms and factoring on a quantum computer. In *International Algorithmic Number Theory Symposium*, pages 289–289. Springer.
- Unruh, D. (2015). Non-interactive zero-knowledge proofs in the quantum random oracle model. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 755–784. Springer.
- Watrous, J. (2009). Zero-knowledge against quantum attacks. SIAM Journal on Computing, 39(1):25–58.