MPSign: A Signature from Small-Secret Middle-Product Learning with Errors

Shi Bai Amin Sakzad Dipayan Das Damien Stehlé Ryo Hiromasa Ron Steinfeld Miruna Rosca Zhenfei Zhang

What is this talk about?

A digital signature scheme whose security in the QROM relies on the hardness of solving ApproxSVP^f for many polynomials f.

Main ingredient:

A reduction from small secret PLWE^f to small secret MP-LWE which works for many f's.

Overview

1. Background

2. Hardness of MP-LWE with small secrets

3. MPSign: our digital signature based on small secret MP-LWE

Background

< □ > < □ > < □ > < □ > < □ >

イロト イヨト イヨト イヨト

Miruna Rosca

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

Correctness: $Ver_{pk}(m, Sign_{sk}(m)) = 1$ w.h.p.

Correctness: $Ver_{pk}(m, Sign_{sk}(m)) = 1$ w.h.p.

ufCMA Security: DS is secure if no adversary, having access to many signatures, is able to produce a signature for a **new** message.

How to build lattice-based crypto?

 ↓
 ↓
 √<</th>

 PKC 2020
 6/22

< □ > < □ > < □ > < □ > < □ >

How to build lattice-based crypto?

[CDPR16], [BBV+17], [CDW17], etc.

ApproxSVP^f is **easier** than ApproxSVP for some f's in some parameter regimes and setups.

Miruna Rosca

MPSign

PKC 2020 6 / 22

イロト イボト イヨト イヨト

[Lyu16]: A problem at least as hard as many $PSIS^{f}$

[Lyu16]: A problem at least as hard as many $PSIS^{f}$

Application: digital signature scheme

Miruna Rosca

MPSign

PKC 2020 7 / 22

[RSSS17]: A problem at least as hard as many $PLWE^{f}$

[RSSS17]: A problem at least as hard as many $PLWE^{f}$

Applications of MP-LWE

- public key encryption: [RSSS17], [SSZ18], [BBD+19]
- identity based encryption: [LVV19]

< □ > < □ > < □ > < □ > < □ > < □ >

 \boldsymbol{f} poly. of degree \boldsymbol{n}

 $\mathsf{PLWE}^f_{q,\chi_1,\chi_2}$

 $f\ {\rm poly.}$ of degree n

 $\mathsf{PLWE}^f_{q,\chi_1,\chi_2}$

 $\mathsf{P}^{f}_{q,\chi_{1}}(s)$ for $s \in \mathbb{Z}_{q}[x]/f$

- $a \leftarrow \mathsf{U}(\mathbb{Z}_q[x]/f)$ and $e \leftarrow \chi_1$
- return $(a, b = a \cdot s + e \mod f)$

イロト 不得 トイラト イラト 一日

 $f\ {\rm poly.}$ of degree n

 $\mathsf{PLWE}^f_{q,\chi_1,\chi_2}$

Distinguish between

 $\mathsf{P}^{f}_{q,\chi_{1}}(s) \text{ for } s \in \mathbb{Z}_{q}[x]/f$ • $a \leftrightarrow \mathsf{U}(\mathbb{Z}_{q}[x]/f) \text{ and } e \leftrightarrow \chi_{1}$ • return $(a, b = a \cdot s + e \mod f)$

$$(u, v = u + s + c \mod s)$$

and

$$\mathsf{U}(\mathbb{Z}_q[x]/f \times \mathbb{R}_q[x]/f)$$

イロト 不得 トイラト イラト 一日

 $f\ {\rm poly.}$ of degree n

 $\mathsf{PLWE}^f_{q,\chi_1,\chi_2}$

Distinguish between

 $\mathsf{P}^{f}_{q,\chi_{1}}(s) \text{ for } s \in \mathbb{Z}_{q}[x]/f$ • $a \leftrightarrow \mathsf{U}(\mathbb{Z}_{q}[x]/f) \text{ and } e \leftrightarrow \chi_{1}$ • return $(a, b = a \cdot s + e \mod f)$

and

 $\mathsf{U}(\mathbb{Z}_q[x]/f \times \mathbb{R}_q[x]/f)$

with non-negl. probability over the choice of $s \leftrightarrow \chi_2$.

Miruna Rosca

イロト 不得 トイヨト イヨト 二日

f poly. of degree n $\mathsf{MP}\text{-}\mathsf{LWE}^{n,d}_{q,\chi_1,\chi_2}$ $\mathsf{PLWE}^{f}_{q,\chi_1,\chi_2}$ Distinguish between $\mathsf{P}^{f}_{a,\gamma_{1}}(s)$ for $s \in \mathbb{Z}_{q}[x]/f$ • $a \leftarrow \mathsf{U}(\mathbb{Z}_q[x]/f)$ and $e \leftarrow \chi_1$ • return $(a, b = a \cdot s + e \mod f)$

and

 $\mathsf{U}(\mathbb{Z}_q[x]/f \times \mathbb{R}_q[x]/f)$

with non-negl. probability over the choice of $s \leftrightarrow \chi_2$.

Miruna Rosca

MPSign

イロト 不得下 イヨト イヨト 二日

and

 $\mathsf{U}(\mathbb{Z}_q[x]/f \times \mathbb{R}_q[x]/f)$

with non-negl. probability over the choice of $s \leftarrow \chi_2$.

Miruna Rosca

MPSign

イロト 不得 トイヨト イヨト 二日

Miruna Rosca

MPSign

PKC 2020 9 / 22

Hardness of MP-LWE with small secrets

イロト イボト イヨト イヨ

* D: distribution which produces small elements w.h.p

* U: uniform distribution

- * D: distribution which produces small elements w.h.p
- * U: uniform distribution

- * D: distribution which produces small elements w.h.p
- * U: uniform distribution

- * D: distribution which produces small elements w.h.p
- * U: uniform distribution

From PLWE^f to MP -LWE for many f's

- * $f \in \mathbb{Z}[x]$ of degree $n, d \leq n$ * $D_{\mathbb{R},\sigma}$: Gaussian on \mathbb{R} with standard deviation σ * $D_{\mathbb{Z},\sigma}$: Gaussian on \mathbb{Z} with standard deviation σ

[RSSS17]	$MP\text{-}LWE^{n,d}_{q,\chi_1,\chi_2}$	$PLWE^{f}_{q,\chi_1,\chi_2}$
χ_1	$D_{\mathbb{R}^d,lpha'q}$	$D_{\mathbb{R}^n,lpha q}$
χ_2	$U(\mathbb{Z}_q^{n+d-1})$	$U(\mathbb{Z}_q^n)$

This work	$MP\text{-}LWE^{n,d}_{q,\chi_1,\chi_2}$	$PLWE^{f}_{q,\chi_1,\chi_2}$
χ_1	$D_{\mathbb{Z}^d,lpha''q}$	$D_{\mathbb{Z}^n,lpha q}$
χ_2	$D_{\mathbb{Z}^{n+d-1},lpha'q}$	$D_{\mathbb{Z}^n, lpha q}$

PKC 2020 12 / 22

イロト イポト イミト イミト 一日

Recall [RSSS17]

$$\operatorname{Rot}_{f}(b) = \operatorname{Rot}_{f}(a) \times \operatorname{Rot}_{f}(s) + \operatorname{Rot}_{f}(e)$$

Miruna Rosca

PKC 2020 13 / 22

・ロト・西ト・モン・ビー シック

Recall [RSSS17]
$$\operatorname{Rot}_{f}(b) = \operatorname{Rot}_{f}(a) \times \operatorname{Rot}_{f}(s) + \operatorname{Rot}_{f}(e)$$
Take first column M_{f} $b = \operatorname{Rot}_{f}(a) \times M_{f}$ s M_{f} s M_{f} e

PKC 2020 13 / 22

・ロト・西ト・ヨト・ヨー うへで

Recall [RSSS17]
Rot_f(b) = Rot_f(a) × Rot_f(s) + Rot_f(e)
Take first column

$$M_f$$
 b = Rot_f(a) × M_f s + M_f e
Decompose Rot_f(a)
b' = Toep(a) Rot_f(1) × M_f s + M_f e

PKC 2020 13 / 22

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

イロト イポト イヨト イヨト

$$\mathsf{D}_{\mathbb{Z},\alpha} + \mathsf{D}_{\mathbb{Z},\beta} \approx \mathsf{D}_{\mathbb{Z},\gamma}$$

A D N A B N A B N A B N

Miruna Rosca

 ▲ ■
 ■

 </

We need a lower bound on the smallest singular value of M_f .

<ロ> <四> <四> <四> <四> <四</p>

We need a lower bound on the smallest singular value of M_f .

• more restrictive family of f's

$$\mathsf{M}_{f} = \begin{pmatrix} * & 0 & 0 & * & * & * \\ 0 & * & 0 & 0 & * & * \\ 0 & 0 & * & 0 & 0 & * \\ \hline 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$

イロト 不得 トイラト イラト 一日

We need a lower bound on the smallest singular value of M_f .

- more restrictive family of f's
- larger noise amplification

$$\mathsf{M}_{f} = \begin{pmatrix} * & 0 & 0 & * & * & * \\ 0 & * & 0 & 0 & * & * \\ 0 & 0 & * & 0 & 0 & * \\ \hline 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$

A D N A B N A B N A B N

PKC 2020 14 / 22

We need a lower bound on the smallest singular value of M_f .

- more restrictive family of f's
- larger noise amplification
- α is related to the family

$$\mathsf{M}_{f} = \begin{pmatrix} * & 0 & 0 & * & * & * \\ 0 & * & 0 & 0 & * & * \\ 0 & 0 & * & 0 & 0 & * \\ \hline 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$

A D F A B F A B F A B

PKC 2020 14 / 22

Digital signature based on MP-LWE

<ロ> <四> <四> <四> <四> <四</p>

Miruna Rosca

MPSign

PKC 2020 16 / 22

<ロ> <四> <四> <四> <四> <四</p>

Miruna Rosca

MPSign

PKC 2020 16 / 22

→ ■ → ■ - つへで PKC 2020 16 / 22

イロト イヨト イヨト イヨト

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

Security: ID is secure if no adversary having access to multiple transcripts (W,c,Z) is able to fool the verifier.

A D F A B F A B F A B

Miruna Rosca

PKC 2020 17 / 22

<ロ> <四> <四> <四> <四> <四</p>

Miruna Rosca

 ↓
 ↓
 √<</th>

 PKC 2020
 18/22

$$y_1, \ y_2 \ {\sf small} \ W = a \odot y_1 + y_2$$

$$\fbox{c = H(W||m)}$$

$$y_1, y_2 \, \, {
m small} \ W = a \odot y_1 + y_2$$

$$c = H(W||m)$$

$$egin{aligned} z_1 &= c \odot s + y_1 \ z_2 &= c \odot e + y_2 \ reject \ z_1, z_2 ? \end{aligned}$$

Miruna Rosca

PKC 2020 18/22

(日) (四) (日) (日) (日)

Miruna Rosca

PKC 2020 18 / 22

Miruna Rosca

PKC 2020 18 / 22

MPSign

Correctness and Security of MPSign

• correctness uses the associativity property of middle product

Correctness and Security of MPSign

• correctness uses the associativity property of middle product

- we fix the wrong security analysis from [Hir18]
 - they incorrectly assume $a \odot_n y$ is uniform for fixed y and uniform a

[KLS18]: ID has some "good properties" \Rightarrow DS is tightly secure in QROM

イロト 不得 トイヨト イヨト 二日

Concrete parameters for MPSign

	$\lambda_Q = 143$	$\lambda_Q = 89$
degree of a	3800	2500
degree of z_2	1910	1300
degree of c	512	512
q	$\approx 2^{91}$	$\approx 2^{87}$
public key size	26.9 KB	19.5 KB
secret key size	1.1 KB	0.8 KB
signature size	20.1 KB	12.8 KB

 chosen accordingly to the best known attacks with the coreSVP hardness methodology

イロト 不得 トイラト イラト 一日

MPSign vs [Lyu16]

$\lambda = 89$	MPSign	[Lyu16]
public key size	19.5 KB	9.6 KB
secret key size	0.8 KB	8.8 KB
signature size	12.8 KB	27 KB

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

MPSign vs [Lyu16]

$\lambda = 89$	MPSign	[Lyu16]
public key size	19.5 KB	9.6 KB
secret key size	0.8 KB	8.8 KB
signature size	12.8 KB	27 KB

- our security proof is tight, while [Lyu16] is not
- we give an efficient key recovery attack on [Lyu16] when sk has very small coefficients
 - $\Rightarrow\,$ you cannot decrease too much the size of the secret key in [Lyu16] to improve it

Miruna Rosca

MPSign

PKC 2020 21 / 22

Summary

- we proved hardness of MP-LWE with short secrets
- we built a digital signature scheme whose security in QROM is based on it
- we provide concrete parameters for our scheme
- we provide a proof-of-concept implementation in Sage
 - https://github.com/pqc-ntrust/middle-product-LWE-signature

イロト イポト イヨト イヨト