
Expected Constant Round Byzantine Broadcast
under Dishonest Majority

Jun Wan (junwan@mit.edu)
Hanshen Xiao (hsxiao@mit.edu)
Elaine Shi (runting@gmail.com)

Srini Devadas (devadas@csail.mit.edu)

Byzantine Broadcast [Lamport et al. 82]

A set of users aim to reach consensus, one of them is the

designated sender.

The sender is given an input bit b ∈ {0, 1}
Consistency : all honest users must output the same bit; and
Validity : all honest users output the sender’s input bit if the
sender is honest.

Background and Previous Work

Under synchronous se�ing,

[Dolev and Strong, 83]: no deterministic protocol can achieve

Byzantine Broadcast within f + 1 rounds, where f is the

number of corrupted users.

Focus on randomized protocols

Previous work

Honest majority: expected constant rounds protocols exist

(even under adaptive adversary) [Katz and Koo 09, Abraham et

al. 19].

Dishonest majority:

Garay et al., 07

O((2f −n)2)

Fitz et al. 09

O((2f −n))

n: # total users

f: # corrupted users

Previous work

Honest majority: expected constant rounds protocols exist

(even under adaptive adversary) [Katz and Koo 09, Abraham et

al. 19].

Dishonest majority:
Garay et al., 07

O((2f −n)2)

Fitz et al. 09

O((2f −n))

Chan et al. 20

polylog (n)

n: # total users

f: # corrupted users

Previous work

Honest majority: expected constant rounds protocols exist

(even under adaptive adversary) [Katz and Koo 09, Abraham et

al. 19].

Dishonest majority: can we also achieve expected constant

round complexity?
Garay et al., 07

O((2f −n)2)

Fitz et al. 09

O((2f −n))

Chan et al. 20

polylog (n)

Our result

O((n / (n – f))2)

n: # total users

f: # corrupted users

Byzantine Broadcast: main theorem

Synchronous, assume trusted cryptographic setup.

Weakly adaptive adversary.

Theorem

There exists a BB protocol with expected O((n
n−f)2) round complexity

under any weakly adaptive adversary that can adaptively corrupt

f < n− 1 nodes.

Novelty and new techniques: Trust graph

Use a new graph idea: the trust graph.

I think that
this black node

Is corrupted.

Vertices: users

Edges: (u, v) indicates that u and v mutually trust each other

Novelty and new techniques: Trust graph

Each user maintains its own trust graph

An edge (u, v) belongs to user w’s trust graph i� w thinks that

u and v mutually trust each other

Trust graph: challenge

Challenge 1: not all misbehavior leave behind cryptographic

evidence.

If a user u accuses v of not sending any message:

u is corrupt and intentionally drops v’s messages
v is corrupt and does not send message

Observation: can’t tell which of {u, v} is corrupt, but at least
one of u and v must be corrupt!

Trust graph: challenge

Challenge 1: not all misbehavior leave behind cryptographic

evidence.

Allow u to complain about v without providing an evidence.

a receiver of this complaint can be convinced that at least one
node among u and v is corrupt

Do not allow u to express distrust about an edge (v,w) that

does not involve itself.

Honest users are always fully connected.

Trust graph: challenge

Challenge 2: users do not share the same trust graph.

Solution: if honest users always share their knowledge to
others, then for any honest nodes u, v :

u’s trust graph in round r + 1 is a subgraph of v’s trust graph in
round r

Work with this imperfect condition to derive agreement.

Properties of the trust graph

If a node u is distrusted by more than f + 1 other users,

can prove that u is a corrupt user and remove u from trust
graph.
the proof: f + 1 distrust signatures

A stronger check condition:

honest users always remain fully connected

=⇒ honest users are always in a clique of size n− f

=⇒ if a node is not in any clique of size n− f , it must be corrupt

Properties of the trust graph

Unfortunately, checking whether a node is in any clique of size

h = n− f is NP-hard.

Let N(u) denotes the set of neighbors of u (including u itself).

A relaxed check condition:

honest users always remain fully connected

=⇒ honest users are always in a clique of size h

=⇒ if an edge (u, v) is not in any h-clique, one of u, v must be corrupt

=⇒ if |N(u) ∩ N(v)| < h, one of u, v must be corrupt

Maintaining the trust graph

Remove edge (u, v) if either u or v complains about the other.

Remove edge (u, v) if |N(u) ∩ N(v)| < h.

Remove a node u if degree of u is less than h− 1.

Theorem
The diameter of any honest user’s trust graph is upper bounded by

d = dn/he+ bn/hc − 1

Trust graph: conclusion

We create a trust graph maintenance scheme that guarantees:

Honest clique invariant: all honest users are fully connected

in any honest user’s trust graph.

Small diameter invariant: honest users’ trust graphs must

have small diameter.

Monotonicity invariant: for any honest users u and v , u’s

trust graph in round t > r must be a subgraph of v’s trust

graph in round r .

Using trust graph: TrustCast protocol

TrustCast: a weaker primitive of consensus,

Use the trust graph to keep track of corrupt users during the

broadcast.

Using trust graph: TrustCast protocol

A sender s wants to send a message to all other users.

If an honest user u has not received from the sender s, then s is

removed from u’s trust graph.

Di�erence between:

u distrusts v : u knows that v is corrupt.

u removes v from its trust graph: u has proof that v is corrupt.

Intuition of TrustCast

A sender s wants to send a message to all other users.

If an honest user u has not received from the sender s, then s is

removed from u’s trust graph.

To achieve this, we will show that

If an honest user u does not receive from the sender s by the
ith round, then

d(u, s) > i,

i.e., the distance between u and s in u’s trust graph is larger

than i.

Intuition of TrustCast

Desired property: if u does not receive from s by the ith round,

then

d(u, s) > i,

Combined with: diameter of an honest user’s trust graph is

upper bounded by d = dn/he+ bn/hc − 1.

Imply: at the end of the d th round, if u has not received from

the sender s, then s is removed from u’s trust graph.

Intuition of TrustCast

Desired property: if u does not receive from s by the ith round,

then

d(u, s) > i.

How to make it happen: if u does not receive from s by the ith

round, then

u distrusts any user v such that d(v, s) < i.

Immediately implies that d(u, s) > i.

TrustCast: example

The sender s shares a message m with A,B,C,D.
The trust graph of an honest user A is a complete graph at the
beginning.

B

S

A

C

D

B

S

A

C

D

TrustCast: example

In round 1, A does not receive anything from s.

By the protocol: A distrusts any user v such that d(s, v) = 0.

Imply: A distrusts the sender s.

B

S

A

C

D

B

S

A

C

D

TrustCast: example

In round 2, B and C does not send anything. D complains to A that s

did not send anything in round 1.

Deal with complaints: A removes the edge (s,D) from its trust

graph.

B

S

A

C

D

B

S

A

C

D

TrustCast: example

In round 2, B and C does not send anything. D complains to A that s

did not send anything in round 1.

By the protocol: A distrusts any user v such that d(s, v) = 1.

Imply: A distrusts users B and C.

B

S

A

C

D

B

S

A

C

D

TrustCast: example

Why A should distrust B and C?

If B,C have received from s: would relay it to A.

If B,C have not received from s: would complain about s to A.

B

S

A

C

D

B

S

A

C

D

TrustCast Protocol: Conclusion

By the end of the TrustCast protocol, u either receives a message
signed by s or removes s from its trust graph.

• Monotonicity condition. We say that Vf satisfies the monotonicity condition if and only if the
following holds. Let r < t and suppose that u, v 2 [n] are honest. Then, if u.Vf(m) = true in
round r, it must hold that v.Vf(m) = true in round t as well. Note that in the above, u and v
could be the same or different parties.

The first condition guarantees that an honest sender always verifies the message it sends. The second
condition, i.e., the Monotonicity condition, guarantees that if an honest node successfully verifies
a message, then that message would pass verification of all other honest nodes in future rounds.
Together, the two conditions imply that the honest sender’s message would pass verification of all
honest nodes.

TrustCast protocol. We describe the TrustCastVf,s(m) protocol below where a sender s 2 [n]
wants to propagate a message of the form m = (T, e, payload) whose validity can be ascertained by
the verification function Vf. Recall that by our common assumptions (see Section 3.2), honest nodes
echo every fresh message seen. Moreover, if an honest node u 2 [n] sees the sender’s signatures on
two messages with the same (T, e) but different payloads, then u removes the sender s from its trust
graph. For brevity, these implicit assumptions will not be repeated in the protocol description below.

Protocol TrustCastVf,s(m)
Input: The sender s receives an input message m and wants to propagate the message m to
everyone.

Protocol: In round 0, the sender s sends the message m along with a signature on m to everyone.

Let d = dn/he+ bn/hc � 1, for each round 1  r  d, every node u 2 [n] does the following:

(?) If no message m signed by s has been received such that u.Vf(m) = true in round r, then
for any v that is a direct neighbor of u in u’s trust graph: if v is at distance less than r from
the sender s, call Distrust(v).

Outputs: At the beginning of round d + 1, if (1) the sender s is still in u’s trust graph and (2) u
has received a message m such that u.Vf(m) = true, then u outputs m.

To better understand the protocol, consider the example where the sender s is a direct neighbor
of an honest node u in u’s trust graph. This means that u “trusts” s, i.e., u thinks that s is an honest
node. Therefore, u expects to receive s’s message in the first round of the TrustCast protocol. If u
has not received from s in the first round, it knows that s must be corrupted. It would thus remove the
edge (u, s) from u’s trust graph.

Similarly, if s is at distance r from u in u’s trust graph, then u should expect to receive a valid
message signed by s in at most r rounds. In case it does not, then u can be convinced that all of its
direct neighbors that are at distance r � 1 or smaller from s in its trust graph must be malicious —
therefore u calls Distrust to declare distrust in all such neighbors. Note that the distrust messages
generated in round r will be processed at the beginning of round r + 1. We now utilize the above
intuition to prove that the TrustCast protocol satisfies the following properties:

• At the end of the TrustCast protocol, any honest node either receives a message from s or
removes s from its trust graph (Theorem 4.1).

• In the TrustCast protocol, we never remove edges between two honest nodes in any honest
node’s trust graph (Theorem 4.2).

16

Round complexity: same as diameter, Θ(n/h).

Byzantine Broadcast

Elect a new leader in each epoch.

Propose: the leader trustcasts a proposal.

Vote: each user trustcasts their votes on leader’s proposals.

Commit: each user trustcasts commit message.

Byzantine Broadcast: why Trust Graph ma�ers

Only nodes on my trust graph ma�ers.

Corrupt users have to send something to remain on honest
users’ trust graphs.

Byzantine Broadcast: why Trust Graph ma�ers

Trust graph Monotonicity property helps!

Proposals / Votes / Commit proofs valid to an honest user u in
round r , will always be valid to all other honest users in round
r + 1.
Once an honest user commits, future leaders cannot propose a
di�erent bit.

Byzantine Broadcast: round complexity

Θ(1) TrustCasts in each epoch =⇒ Θ(n/h) rounds per epoch

Terminates when we have an honest leader, happens in

expected Θ(n/h) epochs.

Round complexity: Θ(n2/h2) in expectation.

Adaptive adversary

An adaptive adversary can corrupt the leader in each epoch.

If all leaders are corrupt, need f + 1 epochs.

Adaptive adversary: solution

Postpone leader election: everyone pretends to be leader.

Make proposals unforgeable even a�er corrupting the leader:

modify and upgrade the TrustCast protocol.

Conclusion

A Byzantine Broadcast protocol under dishonest majority and

weakly adaptive adversary:

expected Θ(1) round complexity.

Θ(n4) the communication complexity.

Open problems and Acknowledgement

How to achieve expected constant round complexity
under a strongly adaptive adversary?

We would like to thank

Zachary Newman, Ling Ren and the anonymous TCC

reviewers;

our awesome shepherd Ran Cohen.

Open problems and Acknowledgement

How to achieve expected constant round complexity
under a strongly adaptive adversary?

We would like to thank

Zachary Newman, Ling Ren and the anonymous TCC

reviewers;

our awesome shepherd Ran Cohen.

Acknowledgement

Thank you!

