Expected Constant Round Byzantine Broadcast
under Dishonest Majority

Jun Wan (junwan@mit.edu)
Hanshen Xiao (hsxiao@mit.edu)
Elaine Shi (runting@gmail.com)

Srini Devadas (devadas@csail.mit.edu)



Byzantine Broadcast [Lamport et al. 82]

@ A set of users aim to reach consensus, one of them is the
designated sender.
@ The sender is given an input bit b € {0, 1}

o Consistency: all honest users must output the same bit; and
o Validity: all honest users output the sender’s input bit if the

sender is honest.



Background and Previous Work

Under synchronous setting,

o [Dolev and Strong, 83]: no deterministic protocol can achieve
Byzantine Broadcast within f 4+ 1 rounds, where f is the

number of corrupted users.

@ Focus on randomized protocols



Previous work

@ Honest majority: expected constant rounds protocols exist
(even under adaptive adversary) [Katz and Koo 09, Abraham et
al. 19].

@ Dishonest majority:

gamy et uf, 07 Fitz et al. 09

o( f -n)?) o(@f -n))

n: # tota[users

ﬁ # COYTM}JI'&Z({USQYS



Previous work

@ Honest majority: expected constant rounds protocols exist
(even under adaptive adversary) [Katz and Koo 09, Abraham et
al. 19].

e Dishonest majority:

Garay et al,, 07 Fitz et al. 09

o( 2f -n)?) o 2f -n))

@ @ @
n: # total users Chan et al. 20
f: # corru]otea( users Joo(y[og (n)



Previous work

@ Honest majority: expected constant rounds protocols exist
(even under adaptive adversary) [Katz and Koo 09, Abraham et
al. 19].

@ Dishonest majority: can we also achieve expected constant

round complexity?

gamy etal, 07 Fitz et al. 09 Our result
o(@2f n)?) o((2f -n)) o((n/(n-f)?)
@ @ @ @
n: # total users Chan et al. 20
f # corm};tec{ users Joo(yfog (n)



Byzantine Broadcast: main theorem

@ Synchronous, assume trusted cryptographic setup.

o Weakly adaptive adversary.

There exists a BB protocol with expected O((nf”f)2) round complexity

under any weakly adaptive adversary that can adaptively corrupt

f < n— 1 nodes.




Novelty and new techniques: Trust graph

@ Use a new graph idea: the trust graph.

e

I think that
this black node
Is corrupted.

@ Vertices: users

e Edges: (u, v) indicates that u and v mutually trust each other



Novelty and new techniques: Trust graph

@ Each user maintains its own trust graph

e An edge (u, v) belongs to user w’s trust graph iff w thinks that

u and v mutually trust each other

O O

0 Od%e

O

20




Trust graph: challenge

@ Challenge 1: not all misbehavior leave behind cryptographic
evidence.
o If a user u accuses v of not sending any message:
e uis corrupt and intentionally drops v’s messages
e vis corrupt and does not send message
@ Observation: can’t tell which of {u, v} is corrupt, but at least

one of uand v must be corrupt!



Trust graph: challenge

@ Challenge 1: not all misbehavior leave behind cryptographic
evidence.
@ Allow u to complain about v without providing an evidence.
o areceiver of this complaint can be convinced that at least one
node among u and v is corrupt
@ Do not allow u to express distrust about an edge (v, w) that

does not involve itself.

@ Honest users are always fully connected.



Trust graph: challenge

@ Challenge 2: users do not share the same trust graph.

o Solution: if honest users always share their knowledge to
others, then for any honest nodes u, v:

e u’s trust graph in round r + 1is a subgraph of v’s trust graph in

round r

e Work with this imperfect condition to derive agreement.



Properties of the trust graph

o If a node u is distrusted by more than f + 1 other users,

e can prove that uis a corrupt user and remove u from trust
graph.
o the proof: f + 1 distrust signatures

@ A stronger check condition:
honest users always remain fully connected

= honest users are always in a clique of size n — f

— if a node is not in any clique of size n — f, it must be corrupt



Properties of the trust graph

o Unfortunately, checking whether a node is in any clique of size
h = n— f is NP-hard.
o Let N(u) denotes the set of neighbors of u (including u itself).

@ A relaxed check condition:

honest users always remain fully connected
= honest users are always in a clique of size h
= if an edge (u, v) is not in any h-clique, one of u, v must be corrupt

= if [IN(u) N N(v)| < h, one of u, v must be corrupt



Maintaining the trust graph

@ Remove edge (u, v) if either u or v complains about the other.
@ Remove edge (u, v) if [IN(u) N N(v)| < h.

@ Remove a node u if degree of u is less than h — 1.

The diameter of any honest user’s trust graph is upper bounded by
d = [n/h| + |n/h| —1




Trust graph: conclusion

We create a trust graph maintenance scheme that guarantees:
@ Honest clique invariant: all honest users are fully connected
in any honest user’s trust graph.
o Small diameter invariant: honest users’ trust graphs must
have small diameter.

@ Monotonicity invariant: for any honest users u and v, u’s
trust graph in round t > r must be a subgraph of v’s trust

graph in round r.



Using trust graph: TrustCast protocol

@ TrustCast: a weaker primitive of consensus,

@ Use the trust graph to keep track of corrupt users during the

broadcast.



Using trust graph: TrustCast protocol

A sender s wants to send a message to all other users.

@ If an honest user u has not received from the sender s, then s is

removed from u’s trust graph.
Difference between:
o u distrusts v: u knows that v is corrupt.

@ uremoves v from its trust graph: u has proof that v is corrupt.



Intuition of TrustCast

A sender s wants to send a message to all other users.
@ If an honest user u has not received from the sender s, then s is
removed from ’s trust graph.
To achieve this, we will show that

o If an honest user u does not receive from the sender s by the
it round, then

d(u,s) > i,

i.e., the distance between u and s in u’s trust graph is larger

than /.



Intuition of TrustCast

e Desired property: if u does not receive from s by the i round,
then
d(u,s) > i,
o Combined with: diameter of an honest user’s trust graph is
upper bounded by d = [n/h]| + |n/h] — 1.
o Imply: at the end of the d round, if u has not received from

the sender s, then s is removed from u’s trust graph.



Intuition of TrustCast

e Desired property: if u does not receive from s by the i round,
then
d(u,s) > i.
e How to make it happen: if u does not receive from s by the it
round, then

o udistrusts any user v such that d(v,s) < i.

e Immediately implies that d(u,s) > i.



TrustCast: example

The sender s shares a message m with A, B, C, D.
The trust graph of an honest user A is a complete graph at the
beginning.

3%




TrustCast: example

In round 1, A does not receive anything from s.
@ By the protocol: A distrusts any user v such that d(s,v) = 0.

o Imply: A distrusts the sender s.




TrustCast: example

In round 2, B and C does not send anything. D complains to A that s
did not send anything in round 1.

@ Deal with complaints: A removes the edge (s, D) from its trust

graph.




TrustCast: example

In round 2, B and C does not send anything. D complains to A that s
did not send anything in round 1.

@ By the protocol: A distrusts any user v such that d(s,v) = 1.
o Imply: A distrusts users B and C.




TrustCast: example

Why A should distrust B and C?
e If B, C have received from s: would relay it to A.

o If B, C have not received from s: would complain about s to A.




TrustCast Protocol: Conclusion

By the end of the TrustCast protocol, u either receives a message
signed by s or removes s from its trust graph.

Protocol TrustCast¥"*(m)
Input: The sender s receives an input message m and wants to propagate the message m to
everyone.
Protocol: In round 0, the sender s sends the message m along with a signature on m to everyone.

Letd = [n/h] + [n/h] — 1, for each round 1 < r < d, every node u € [n] does the following:
(%) If no message mn signed by s has been received such that u.Vf(m) = true in round r, then

for any v that is a direct neighbor of u in u’s trust graph: if v is at distance less than r from
the sender s, call Distrust(v).

Outputs: At the beginning of round d + 1, if (1) the sender s is still in u’s trust graph and (2) u
has received a message m such that u.Vf(m) = true, then u outputs m.

Round complexity: same as diameter, ©(n/h).



Byzantine Broadcast

Elect a new leader in each epoch.
@ Propose: the leader trustcasts a proposal.
@ Vote: each user trustcasts their votes on leader’s proposals.

o Commit: each user trustcasts commit message.



Byzantine Broadcast: why Trust Graph matters

@ Only nodes on my trust graph matters.

o Corrupt users have to send something to remain on honest

users’ trust graphs.



Byzantine Broadcast: why Trust Graph matters

@ Trust graph Monotonicity property helps!

e Proposals / Votes / Commit proofs valid to an honest user u in
round r, will always be valid to all other honest users in round
r41.

e Once an honest user commits, future leaders cannot propose a
different bit.



Byzantine Broadcast: round complexity

e O(1) TrustCasts in each epoch = ©(n/h) rounds per epoch

@ Terminates when we have an honest leader, happens in
expected ©(n/h) epochs.

@ Round complexity: ©(n?/h?) in expectation.



Adaptive adversary

@ An adaptive adversary can corrupt the leader in each epoch.

o If all leaders are corrupt, need f + 1 epochs.



Adaptive adversary: solution

o Postpone leader election: everyone pretends to be leader.
@ Make proposals unforgeable even after corrupting the leader:

o modify and upgrade the TrustCast protocol.



Conclusion

A Byzantine Broadcast protocol under dishonest majority and

weakly adaptive adversary:
e expected ©(1) round complexity.

e O(n*) the communication complexity.



Open problems and Acknowledgement

e How to achieve expected constant round complexity

under a strongly adaptive adversary?



Open problems and Acknowledgement

e How to achieve expected constant round complexity

under a strongly adaptive adversary?
We would like to thank

@ Zachary Newman, Ling Ren and the anonymous TCC

reviewers;

@ our awesome shepherd Ran Cohen.



Acknowledgement

Thank you!



